#### 数理情報工学特論第一第5回

#### 河瀬 康志

2022年11月4日

last update: 8:32pm, November 4, 2022

#### スケジュール

- 1. ゲーム理論の基礎 (10/7)
- 2. マッチング 1 (10/14)
- 3. マッチング 2 (10/21)
- 4. 公平割当1 (10/28)
- 5. 公平割当 2 (11/4)
- 6. オークション1 (11/11)
- 7. オークション 2 (11/48/25)



# アウトライン

- ① 公平割当問題
- ② 割当メカニズム
  - Round Robin メカニズム
  - Envy-cycles メカニズム
  - MNW割当
  - Adjusted winner メカニズム
- 3 演習

#### 資源配分

家,パソコン,車,絵画,本,服,施設の予約枠,...

- 限られた資源を何人かで分けたい
- どのように分けるのがよいか?







|   | Ø |     | <b>%</b> | <b>8</b> |
|---|---|-----|----------|----------|
| 8 | 0 | 200 | 150      | 350      |
|   | 0 | 80  | 100      | 180      |

#### どの割当が「よい」? どうやって見つける?

**5** : 200 **5** : 150 **5** : 350 **5** : 0

**3** : 100 **3** : 80 **3** 

**5** : 200 **5** : 0 **5** : 150 **5** : 0 **5** : 0

\$\bigs\ : 80 \bigs\ : 0 \bigs\ : 100 \bigs\ : 0

# 「よい」分け方とは

みんなが納得できて実行可能な配分ルールを設計したい

公平性 えこひいきをしない 誰かが独占するようなものは許さない

効率性 無駄のない割当ができる 全部捨てるのは公平だがダメ

計算可能性 多項式時間で計算できる 結果の計算に時間がかかると困る

耐戦略性 嘘をつくインセンティブがない 選好を正しく集められる

正直に表明することが支配戦略均衡となること

#### 入力

- エージェント集合  $N = \{1, ..., n\}$
- 不可分財の集合 E
- 各  $i \in N$  の効用関数  $u_i : 2^E \to \mathbb{R}_+$ 
  - 正規化済:  $u_i(\emptyset) = 0$
  - **単**調:  $u_i(X) \leq u_i(Y)$  if  $X \subseteq Y \subseteq E$

#### 出力

- 割当  $\mathbf{X} = (X_1, \dots, X_n)$ 
  - $X_i \subseteq E$  for all  $i \in N$
  - $X_i \cap X_j = \emptyset$  for all distinct  $i, j \in N$

#### 重要な効用関数のクラス

- 加法的:  $\forall X, Y \subseteq E \text{ with } X \cap Y = \emptyset: \ u_i(X \cup Y) = u_i(X) + u_i(Y)$ 
  - $u_i(X) = \sum_{e \in X} u_i(\{e\})$  と書けることと同値
  - 各財の価値が独立であるということ
- 劣モジュラ: $\forall X, Y \subseteq E: \ u_i(X \cup Y) + u_i(X \cap Y) \le u_i(X) + u_i(Y)$ 
  - ・  $\forall X \subseteq \forall Y \subseteq E \text{ and } e \in E \setminus Y$ :  $u_i(X \cup \{e\}) u_i(X) \ge u_i(Y \cup \{e\}) u_i(Y)$  と同値
  - 限界効用逓減性を表す
- 劣加法的: $\forall X, Y \subseteq E \text{ with } X \cap Y = \emptyset: \ u_i(X \cup Y) \le u_i(X) + u_i(Y)$ 
  - 組み合わせることによる嬉しさはない (ケーキとコーヒー,ゲーム機とソフト)

劣加法的 ⊋ 劣モジュラ ⊋ 加法的 以後基本的には加法的な場合を扱う

#### 効率性の典型的な指標

#### 功利主義的社会最適

効用の和が最大の割当: $rg \max_{\mathbf{X}} \sum_{i \in N} u_i(X_i)$ 

Bentham「最大多数の最大幸福」の価値観

#### Pareto 効率性

誰かの効用を犠牲にしなければ他の誰も効用を高められない割当

#### Completeness (完備性)

すべての財を割り当てる: $\bigcup_{i \in N} X_i = E$ 

例: 🌭 🍾 を 🔓 🖟 に割当

|   | Ø |     | <b>%</b> | <b>8</b> |
|---|---|-----|----------|----------|
| 8 | 0 | 200 | 150      | 350      |
| 8 | 0 | 80  | 100      | 180      |

#### 公平性の典型的な指標

無羨望性 (EF) [Foley 1967; Varian 1974]

誰も羨望(envy)をもたない割当:  $u_i(X_i) \geq u_i(X_j) \ (\forall i, j \in N)$ 

Envy-freeness up to one good (EF1) [Budish 2011]

羨望は高々財1個分: $u_i(X_i) \ge u_i(X_j \setminus \{e\}) \ (\forall i, j \in N, \exists e \in X_j \text{ or } X_j = \emptyset)$ 

Envy-freeness up to the least valued good (EFX) [Caragiannis et al. 2016]

羨望は高々財 1 個分: $u_i(X_i) \ge u_i(X_j \setminus \{e\}) \ (\forall i, j \in N, \ \forall e \in X_j)$ 

例: 🍑 🍖 を 🔏 🖟 に割当

|   | Ø |     | <b>%</b> | <b>8</b> |
|---|---|-----|----------|----------|
| 8 | 0 | 300 | 150      | 450      |
|   | 0 | 200 | 100      | 300      |

# アウトライン

- 1 公平割当問題
- ② 割当メカニズム
  - Round Robin メカニズム
  - Envy-cycles メカニズム
  - MNW 割当
  - Adjusted winner メカニズム
- 3 演習

# アウトライン

- 1 公平割当問題
- ② 割当メカニズム
  - Round Robin メカニズム
  - Envy-cycles メカニズム
  - MNW割当
  - Adjusted winner メカニズム
- ③ 演習

- エージェントの順序 σ を決める
- ラウンド  $k \pmod{n}$  では  $\sigma_k$  が余っている中で最も好ましい財を選択

|   | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ |
|---|-------|-------|-------|-------|-------|-------|
| 1 | 5     | 2     | 5     | 6     | 3     | 0     |
| 2 | 8     | 3     | 5     | 7     | 1     | 3     |
| 3 | 10    | 1     | 5     | 4     | 3     | 2     |

- エージェントの順序 σ を決める
- ラウンド  $k \pmod{n}$  では  $\sigma_k$  が余っている中で最も好ましい財を選択

|   | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ |
|---|-------|-------|-------|-------|-------|-------|
| 1 | 5     | 2     | 5     | 6     | 3     | 0     |
| 2 | 8     | 3     | 5     | 7     | 1     | 3     |
| 3 | 10    | 1     | 5     | 4     | 3     | 2     |

- エージェントの順序 σ を決める
- ラウンド  $k \pmod{n}$  では  $\sigma_k$  が余っている中で最も好ましい財を選択

|   | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ |
|---|-------|-------|-------|-------|-------|-------|
| 1 | 5     | 2     | 5     | 6     | 3     | 0     |
| 2 | 8     | 3     | 5     | 7     | 1     | 3     |
| 3 | 10    | 1     | 5     | 4     | 3     | 2     |

- エージェントの順序 σ を決める
- ラウンド  $k \pmod{n}$  では  $\sigma_k$  が余っている中で最も好ましい財を選択

|   | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ |
|---|-------|-------|-------|-------|-------|-------|
| 1 | 5     | 2     | 5     | 6     | 3     | 0     |
| 2 | 8     | 3     | 5     | 7     | 1     | 3     |
| 3 | 10    | 1     | 5     | 4     | 3     | 2     |

- エージェントの順序 σ を決める
- ラウンド  $k \pmod{n}$  では  $\sigma_k$  が余っている中で最も好ましい財を選択

|   | $e_1$ | $e_2$ | $e_3$      | $e_4$ | $e_5$ | $e_6$ |
|---|-------|-------|------------|-------|-------|-------|
| 1 | 5     | 2     | 5          | 6     | 3     | 0     |
| 2 | 8     | 3     | 5          | 7     | 1     | 3     |
| 3 | 10    | 1     | <u>(5)</u> | 4     | 3     | 2     |

- エージェントの順序 σ を決める
- ラウンド  $k \pmod{n}$  では  $\sigma_k$  が余っている中で最も好ましい財を選択

|   | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ |
|---|-------|-------|-------|-------|-------|-------|
| 1 | 5     | 2     | 5     | 6     | 3     | 0     |
| 2 | 8     | 3     | 5     | 7     | 1     | 3     |
| 3 | 10    | 1     | 5     | 4     | 3     | 2     |

- エージェントの順序 σ を決める
- ラウンド  $k \pmod{n}$  では  $\sigma_k$  が余っている中で最も好ましい財を選択

|   | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ |
|---|-------|-------|-------|-------|-------|-------|
| 1 | 5     | 2     | 5     | 6     | 3     | 0     |
| 2 | 8     | 3     | 5     | 7     | 1     | 3     |
| 3 | 10    | 1     | 5     | 4     | 3     | 2     |

- エージェントの順序 σ を決める
- ラウンド  $k \pmod{n}$  では  $\sigma_k$  が余っている中で最も好ましい財を選択

|   | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ |
|---|-------|-------|-------|-------|-------|-------|
| 1 | 5     | 2     | 5     | 6     | 3     | 0     |
| 2 | 8     | 3     | 5     | 7     | 1     | 3     |
| 3 | 10    | 1     | 5     | 4     | 3     | 2     |

- この割当は EF1 を満たす → 実は常に EF1 割当を出力する (次スライド)
- Pareto 効率的ではない  $((e_4e_5|e_2e_3e_6|e_1)$  が Pareto 支配)

#### Round Robin の公平性

#### 定理

(効用関数が加法的なとき)Round Robin メカニズムの出力 X は EF1 を満たす

- i < j とし, $\sigma_i$ ,  $\sigma_j$  の間の羨望を解析する
- $\sigma_i,\sigma_j$ がk個目に受け取る財を $e_{i,k},e_{j,k}$ とする
- $\sigma_i$  が受け取る財の個数を r とする
- ・  $u_{\sigma_j}(e_{j,k}) \ge u_{\sigma_j}(e_{i,k+1}) \ (k=1,2,\ldots,r-1)$  より  $u_{\sigma_j}(X_j) \ge u_{\sigma_j}(X_i \setminus \{e_{i,1}\})$

| $\mathbf{v}$ | 1+ |                  |
|--------------|----|------------------|
| $\Lambda$    | 14 | $\Box \Box \bot$ |

| $\sigma_i$                                         | $\sigma_j$                                         |
|----------------------------------------------------|----------------------------------------------------|
| $e_{i,1}$                                          | $e_{j,1}$                                          |
| $e_{i,2}$                                          | $e_{j,2}$                                          |
| $e_{i,3}$                                          | $e_{j,3}$                                          |
| :                                                  | :                                                  |
| $e_{i,r-1}$                                        | $e_{j,r-1}$                                        |
| $e_{i,r}$                                          | $e_{j,r}$                                          |
| [                                                  | 存在しないかも                                            |
| $e_{i,2}$ $e_{i,3}$ $\vdots$ $e_{i,r-1}$ $e_{i,r}$ | $e_{j,2}$ $e_{j,3}$ $\vdots$ $e_{j,r-1}$ $e_{j,r}$ |

# アウトライン

- 1 公平割当問題
- ② 割当メカニズム
  - Round Robin メカニズム
  - Envy-cycles メカニズム
  - MNW割当
  - Adjusted winner メカニズム
- ③ 演習

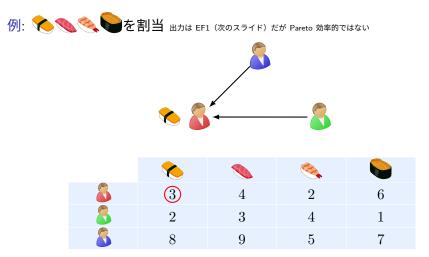
- 各財を順に誰にも妬まれていないエージェントに割当
- もしも妬みでサイクルができたら、それぞれの持分を交換



9

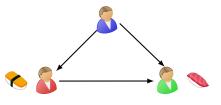
5

- 各財を順に誰にも妬まれていないエージェントに割当
- もしも妬みでサイクルができたら、それぞれの持分を交換



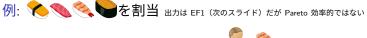
- 各財を順に誰にも妬まれていないエージェントに割当
- もしも妬みでサイクルができたら、それぞれの持分を交換

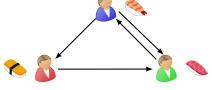




|   | <b>*</b> |   |   |   |
|---|----------|---|---|---|
| 8 | 3        | 4 | 2 | 6 |
|   | 2        | 3 | 4 | 1 |
| 8 | 8        | 9 | 5 | 7 |

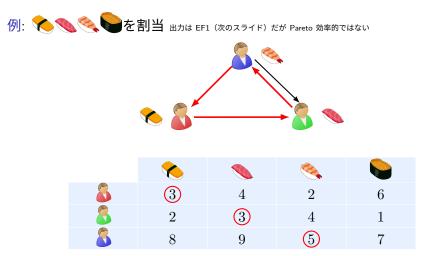
- 各財を順に誰にも妬まれていないエージェントに割当
- もしも妬みでサイクルができたら、それぞれの持分を交換



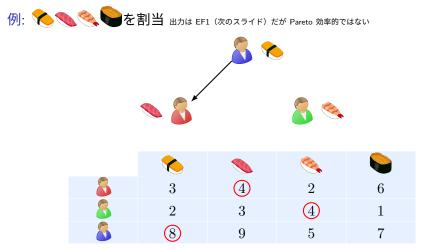


|   | <b>*</b> |   |            |   |
|---|----------|---|------------|---|
| 8 | 3        | 4 | 2          | 6 |
| 8 | 2        | 3 | 4          | 1 |
| 8 | 8        | 9 | <u>(5)</u> | 7 |

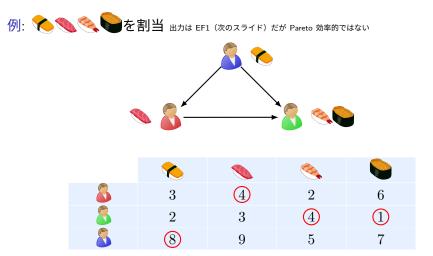
- 各財を順に誰にも妬まれていないエージェントに割当
- もしも妬みでサイクルができたら、それぞれの持分を交換



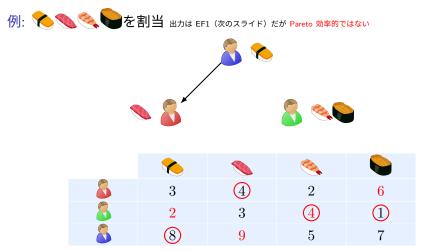
- 各財を順に誰にも妬まれていないエージェントに割当
- もしも妬みでサイクルができたら、それぞれの持分を交換



- 各財を順に誰にも妬まれていないエージェントに割当
- もしも妬みでサイクルができたら、それぞれの持分を交換



- 各財を順に誰にも妬まれていないエージェントに割当
- もしも妬みでサイクルができたら、それぞれの持分を交換



# Envy-cycles メカニズムの公平性

#### 定理

一般の効用関数でも,Envy-cycles メカニズムの出力 X は EF1 を満たす

#### 証明

- 各ステップにおいて EF1 であることを帰納法で示す
- 割当前は EF1 (EF) であることは明らか
- あるステップにおいて EF1 であるとき
  - 誰にも妬まれていないエージェントに財を割り当てても EF1
     新しくできる妬みは高々新たに割り当てた財の1個分なので
  - 妬みサイクルで持分を交換しても EF1 は壊れない
     交換した人は持分がよくなり、他人の持分の良さは変わらないので

## アウトライン

- ① 公平割当問題
- ② 割当メカニズム
  - Round Robin メカニズム
  - Envy-cycles メカニズム
  - MNW 割当
  - Adjusted winner メカニズム
- ③ 演習

#### MNW割当

- Nash Welfare:  $\prod_{i \in N} u_i(X_i)$
- Maximum Nash Welfare (MNW)  $\longrightarrow$  Nash welfare 最大の割当ただし,任意の割当について  $\prod_{i\in N}u_i(X_i)=0$  の場合は, $u_i(X_i)>0$  となるエージェント数が最大の中で  $\prod_{i:\;u(X_i)>0}u_i(X_i)$  が最大となる割当

#### 例 $\prod_{i \in N} u_i(X_i) = 8 \times 13 \times 10 = 1040$

|   | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ |
|---|-------|-------|-------|-------|-------|-------|
| 1 | 5     | 2     | 5     | 6     | 3     | 0     |
| 2 | 8     | 3     | 5     | 7     | 1     | 3     |
| 3 | 10    | 1     | 5     | 4     | 3     | 2     |

計算は NP-hard

#### MNW 割当の効率性・公平性

#### 定理 [Caragiannis et al. 2016]

(効用関数が加法的なとき)MNW 割当 X は Pareto 効率的かつ EF1

- Pareto 効率的: Pareto 改善できると Nash welfare は増えるので矛盾
- EF1: 背理法で示す. $u_i(X_i) < u_i(X_j \setminus \{e\}) \ (\forall e \in X_j)$  と仮定
  - $e^* \in rg \min_{e \in X_i, \ u_i(e) > 0} u_j(e)/u_i(e)$  (妬みがあるのでこういう財は存在)
    - (a)  $u_i(X_i) < u_i(X_j) u_i(e^*)$

(b) 
$$\frac{u_j(e^*)}{u_i(e^*)} \le \frac{\sum_{e \in X_j, u_i(e) > 0} u_j(e)}{\sum_{e \in X_j, u_i(e) > 0} u_i(e)} \le \frac{\sum_{e \in X_j} u_j(e)}{\sum_{e \in X_j} u_i(e)} = \frac{u_j(X_j)}{u_i(X_j)}$$

ullet  $e^*$  を j から i に渡した割当  $\mathbf{X}'$  では Nash welfare は増えて矛盾

$$\begin{split} \frac{\prod_k u_k(X_k')}{\prod_k u_k(X_k)} &= \frac{(u_i(X_i) + u_i(e^*))(u_j(X_j) - u_j(e^*))}{u_i(X_i) \cdot u_j(X_j)} = \left(1 + \frac{u_i(e^*)}{u_i(X_i)}\right) \cdot \left(1 - \frac{u_j(e^*)}{u_j(X_j)}\right) \\ \text{(a) より成立} &> \left(1 + \frac{u_i(e^*)}{u_i(X_j) - u_i(e^*)}\right) \cdot \left(1 - \frac{u_j(e^*)}{u_j(X_j)}\right) = \frac{1 - u_j(e^*)/u_j(X_j)}{1 - u_i(e^*)/u_i(X_j)} \\ \text{(b) より成立} &\geq 1 \end{split}$$

## アウトライン

- 1 公平割当問題
- ② 割当メカニズム
  - Round Robin メカニズム
  - Envy-cycles メカニズム
  - MNW割当
  - Adjusted winner メカニズム
- 3 演習

n = 2 の場合のみ適用可能な方法

- エージェント1に全ての財を割当
- $u_1(e)/u_2(e)$  について降順に財を並べ替え
- 財を順にエージェント2に渡す
- エージェント 2 の羨望が財 1 個分以下になったら終了  $u_2(X_2) \geq u_2(X_1 \setminus \{e\})$   $(\exists e \in X_1)$

|   | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$      | $e_6$ |
|---|-------|-------|-------|-------|------------|-------|
| 1 | 20    | 30    | (25)  | (10)  | <u>(5)</u> | (10)  |
| 2 | 10    | 20    | 20    | 15    | 10         | 30    |

n = 2 の場合のみ適用可能な方法

- エージェント1に全ての財を割当
- $u_1(e)/u_2(e)$  について降順に財を並べ替え
- 財を順にエージェント2に渡す
- エージェント 2 の羨望が財 1 個分以下になったら終了  $u_2(X_2) \geq u_2(X_1 \setminus \{e\})$   $(\exists e \in X_1)$

|   | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$      | $e_6$             |
|---|-------|-------|-------|-------|------------|-------------------|
| 1 | 20    | (30)  | (25)  | (10)  | <u>(5)</u> | $\frac{10}{(30)}$ |
| 2 | 10    | 20    | 20    | 15    | 10         | (30)              |

n = 2 の場合のみ適用可能な方法

- エージェント1に全ての財を割当
- $u_1(e)/u_2(e)$  について降順に財を並べ替え
- 財を順にエージェント2に渡す
- エージェント 2 の羨望が財 1 個分以下になったら終了  $u_2(X_2) \geq u_2(X_1 \setminus \{e\})$   $(\exists e \in X_1)$

|   | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ |
|---|-------|-------|-------|-------|-------|-------|
| 1 | (20)  | (30)  | (25)  | (10)  | 5     | 10    |
| 2 | 10    | 20    | 20    | 15    | (10)  | (30)  |

n = 2 の場合のみ適用可能な方法

- エージェント1に全ての財を割当
- $u_1(e)/u_2(e)$  について降順に財を並べ替え
- 財を順にエージェント2に渡す
- エージェント 2 の羨望が財 1 個分以下になったら終了  $u_2(X_2) \geq u_2(X_1 \setminus \{e\})$   $(\exists e \in X_1)$

|   | $e_1$ | $e_2$ | $e_3$ | $e_4$                                     | $e_5$ | $e_6$ |
|---|-------|-------|-------|-------------------------------------------|-------|-------|
| 1 | (20)  | (30)  | (25)  | 10                                        | 5     | 10    |
| 2 | 10    | 20    | 20    | $ \begin{array}{c} 10 \\ 15 \end{array} $ | (10)  | 30    |

#### 定理

#### Adjusted winner メカニズムの出力は Pareto 効率的

 $u_1(e) = 0$ ,  $u_2(e) > 0$  となる財を全てエージェント 2 に渡した後は 常に Pareto 効率的な割当となっていることを示す

- 最後にエージェント 2 に渡した財を  $e^*$  とし, $\alpha \coloneqq u_1(e^*)/u_2(e^*)$  とする
  - 各  $e \in X_1$  について  $u_1(e)/u_2(e) \ge \alpha$
  - 各  $e \in X_2$  について  $u_1(e)/u_2(e) \le \alpha$
- 現在の割当は  $u_1(X_1)+lpha\cdot u_2(X_2)$  について最大の割当となっている 各財をより効率的な方に割り当てているため
- Pareto 改善できたとすると  $u_1(X_1) + \alpha \cdot u_2(X_2)$  が増えるので矛盾

#### 定理

(効用関数が加法的なとき)Adjusted winner メカニズムの出力 X は EF1

- $u_2(X_2) \geq u_2(X_1 \setminus \{e\}) \ (\exists e \in X_1)$  は成立
- 最後にエージェント 2 に渡した財を  $e^*$ ,渡す直前の割当を  $\mathbf{X}'$  とする  $X_1' = X_1 \cup \{e^*\}, X_2' = X_2 \setminus \{e^*\}$
- メカニズムの動作より, $u_2(X_2') < u_2(X_1' \setminus \{e^*\}) = u_2(X_1)$
- $\mathbf{X}'$  は  $(X_2,X_1)$  に Pareto 支配されないので, $u_1(X_1') \geq u_1(X_2)$
- $\sharp$   $\tau$ ,  $u_1(X_1) = u_1(X_1') u_1(e^*) \ge u_1(X_2) u_1(e^*) = u_1(X_2 \setminus \{e^*\})$

#### メカニズムまとめ

| メカニズム           | n  | 効用関数 | 効率性        | 公平性 | 計算量     |
|-----------------|----|------|------------|-----|---------|
| Round robin     | 一般 | 加法的  | complete   | EF1 | 多項式時間   |
| Envy-cycles     | 一般 | 一般   | complete   | EF1 | 多項式時間   |
| MNW             | 一般 | 加法的  | Pareto 効率的 | EF1 | NP-hard |
| Adjusted winner | 2  | 加法的  | Pareto 効率的 | EF1 | 多項式時間   |

- どのメカニズムも耐戦略性は満たしていない
- n=2,加法的でも Pareto 効率的 & EF1 & 耐戦略的なメカニズムは存在しない [Amanatidis et al. 2017]
- complete & EFX な割当が存在するかは未解決
   (n = 3, 加法的) や (n = 2, 一般) なら存在

# アウトライン

- 1 公平割当問題
- ② 割当メカニズム
  - Round Robin メカニズム
  - Envy-cycles メカニズム
  - MNW割当
  - Adjusted winner メカニズム
- 3 演習

#### 演習

Round robin, Envy-cycles, MNW, Adjusted winner の 4 つのメカニズムについて,戦略的操作可能となる例を示せ.

(どんなタイブレークでもダメなことを示せ)