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Schedule

Lec. # | Date Topics

1| 10/4 Introduction, Stable matching
10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)
10/18 Greedy Algorithms (2/2)
10/25 Divide and Conquer (1/2)
11/1  Divide and Conquer (2/2)
11/8  Dynamic Programming (1/2)
11/15 Dynamic Programming (2/2)
— | 11/22  Thursday Classes
8 | 11/29 Network Flow (1/2)
9| 12/6 Network Flow (2/2)
10 | 12/13 NP and Computational Intractability
11 | 12/20 Approximation Algorithms (1/2)
12 | 12/27 Approximation Algorithms (2/2)
13 | 1/10 Randomized Algorithms
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@ Edmonds—Karp algorithm
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Max-flow problem

Problem

e Input: flow network (G, s, t, c) [Z em(s)eBfe = L em(uier e

e Goal: find an s—t flow of maximum value val(f)

Example

Yasushi Kawase Advanced Core in Algorithm Design

4/

30



Max-flow problem

Problem

e Input: flow network (G, s, t, c) {Z em(syerde = v em(usyer fe
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Algorithms for the max-flow problem

This lecture
o Ford—Fulkerson algorithm —» O(mC) time (pseudo polynomial-time)
e Scaling algorithm = O(m?log C) time (weak polynomial-time)

e Edmonds—Karp algorithm = O(m?n) time (strong polynomial-time)
State of the Art

e O(mn) time [Orlin 2013]

o m!T°W log C' time [Chen et al., 2022]
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Ford—Fulkerson algorithm

Augment(f, ¢, P)

0 <bottleneck capacity of augmenting path P;
foreach ¢ € P do

if e € E then f, < f. +9;
L else f; < f: — 0;

B W N =

(54

Return f;
Output of Augment(f, ¢, P) is a flow

Ford—Fulkerson algorithm

fe < 0 for each e € F,
Gy < residual network of G with respect to flow f;
while 3 an s—t path P in Gy do
f « Augment(f, ¢, P);
L Update GY;

Return f;

G W=

(=]
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Edmonds—Karp algorithm

Choosing augmenting path that uses the fewest edges (can be found via BFS)

Edmonds—Karp algorithm

1 fo < 0 for each e € F;

2 Gy « residual network of G with respect to flow f;
3 while 3 an s—t path in G do

4 P < a shortest s—t path in GY;

5 f < Augment(f, c, P);

6 Update GY;

7 Return f;
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Overview of analysis
d(f): the length (number of edges) of a shortest augmenting path

Lemma 1
d(f) never decreases during the execution

Lemma 2

d(f) increases at least once per m iterations

Theorem [strongly polynomial time}

Edmonds—Karp algorithm can be implemented to run in O(m?n) time

e at most n — 1 different lengths
e at most m augmentation paths of length &k

e O(m) time to find a shortest augmenting path
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Lemma 1

Lemma 1

d(f) never decreases during the execution

e classify vertices based on their distance from s in G/
e three types of edges: forward, sideways, backwards

e new edges added to G by augmentation must be backwards

distance 0 1 2 3 a(f) —1 a(f)
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Lemma 2

Lemma 2

d(f) increases at least once per m iterations

e at least one forward edge is deleted from G} per augmentation
e no forward edge will be added until d(f) increases

e within m iterations, there will be no paths using only forward edges

distance 0 1 2 3 a(f)—1 a(f)
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Bipartite matching problem

Problem

° |nPUtZ bipal’tite graph G = (A; B; E) {a set of pairwise non-adjacent edges}

e Goal: find a maximum cardinality matching

Example
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Bipartite matching problem

Problem

° |nPUtZ bipartite graph G = (A; B; E) {a set of pairwise non-adjacent edges}

e Goal: find a maximum cardinality matching

Example
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Reduction

Bipartite matching problem can be reduced to max-flow problem

Recall that there exists an integral max-flow
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Application of Ford—Fulkerson algorithm

Theorem

Ford—Fulkerson algorithm finds a maximum matching in O(mn) time

e The size of the maximum matching = the value of the maximum flow
e The size of the maximum matching is O(n)

o Ford—Fulkerson: O(n) augmentations, each one takes O(m) time

—» O(mn) time
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Hall's theorem

G = (A, B; E): bipartite graph

Theorem

3 matching M of size |4| < |T'(X)| > |X| (VX C A)

(=) - T'(X) contains all the partners of X in M
(<) - |T(SN A)| < |SN A for the set of vertices S reachable from s in Gy
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Application of Hall's theorem: Card magic

e Deal a standard deck of cards out into 13 piles of 4 cards each

e Is it always possible to select exactly 1 card from each pile, such that
the 13 selected cards contain exactly one card of each rank?
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Application of Hall's theorem: Card magic

e Deal a standard deck of cards out into 13 piles of 4 cards each

e Is it always possible to select exactly 1 card from each pile, such that

the 13 selected cards contain exactly one card of each rank?
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Bipartite minimum vertex cover problem

Problem
e Input: bipartite graph G = (A, B; E)

e Goal: find a minimum cardinality vertex cover

[a set of vertices that includes at least one endpoint of every edge}

Example
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Bipartite minimum vertex cover problem

Problem
e Input: bipartite graph G = (A, B; E)

e Goal: find a minimum cardinality vertex cover

[a set of vertices that includes at least one endpoint of every edge]

Example
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Weak duality

Proposition

|M| < |C| for any matching M and vertex cover C

".- each e € M must be covered by a distinct vertex

Example
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Strong duality

[the residual graph at the end of Ford—Fulkerson algorithm}

Koénig's theorem

mMaXnsr: matching |M‘ = MINC: vertex cover |C|

e S: the set of vertices reachable from s in Gy

e (A\S)U(BNS)isVCas Alu,v) € F suchthat ue ANSandve B\ S
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Quiz

Find a maximum matching and a minimum vertex cover.

%
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© Image segmentation
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Image segmentation

Problem
e Input: image

o Goal: label each pixel as either the foreground or the background

Example
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Segmentation problem

Problem
e Input:
undirected graph G = (V, E) (V: pixel, E: neighbor)
likelihood a; € R, that i € V belongs to the foreground
likelihood b; € Ry that j € V belongs to the background
e separation penalty p; € R, for each {7,j} € E
e Goal: find X C V that maximizes ¢(X) = Zal Z by — Z Dij

i€ X JEVAX {i,j}€6(X)
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Reduction to minimum cut

Observation
maximizing ¢(X) <= minimizing g¢(X)
o ¢(X) =D iex @i+ 2jev\x b — Lqigyes(x) Pii
o (X)) =2 ev(aitbi) —q(X) = Yiex bit2jev\x G+ qijyes(x) Pi

(S \ {s}) = cap(9)
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Result

Algorithm

1 Construct the corresponding flow network;
2 Find the minimum-cut S for the network;
3 Return S\ {s};

Theorem
The solution to the segmentation problem can be obtained by a
minimum-cut algorithm (e.g., O(|E|?| V) time)
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Densest subgraph problem

Problem
e Input: undirected graph G = (V, E) [{{u,v}emu,ves}}

e Goal: find a nonempty S C V that maximizes dens(S) := | E(S)|/|S|

EZN

O(mn) possibilities of density: ¢/k for k=1,2,...,nand £ =0,1,...,m

Example

—> sufficient to solve the existence of S s.t. dens(S) > «
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Densest subgraph problem

Problem
e Input: undirected graph G = (V, E) [{{u,v}emu,ves}}

e Goal: find a nonempty S C V that maximizes dens(S) := | E(S)|/|S|

AN

dens(S) =5/4

Example

O(mn) possibilities of density: ¢/k for k=1,2,...,nand £ =0,1,...,m

—> sufficient to solve the existence of S s.t. dens(S) > «
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Reduction

Proposition
e cap(S) = mn+ 2(|S| — 1)(a — dens(S \ {s}))
e cap(S) < mn <= dens(S\ {s}) > «
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Proof of Proposition

cap(9) = Z (m + 2c0 — deg(u Z m + Z 1

ueS\{s} ueV\S {u,v}eE: ueS, v S
=mn+2a(]S] —1) — Z deg(u Z 1
ueS\{s} {u,v}€E: ueS, vgZS

=mn+2a(]S] —1) — Q‘E[S\{S}H
= mn + 2(|S| — 1)(o — dens(S \ {s}))

m + 2a — deg(u)

m+ 2a — deg(v)
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Algorithm

e Sort P = {K/k ’ ke {1,2, RN n}, le {0, 1,..., m}} O(mnlogn) time

e compute max{a € P | dens(S) < a (VS)} by binary search
e O(log n) min-cut problems (with n + 2 vertices, m + 2n edges)
e min-cut problem can be solve in O(m?n) time by Edmonds—Karp

— total running time is O(m?nlog n)
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