
Advanced Core in Algorithm Design #9
算法設計要論 第 9回

Yasushi Kawase
河瀬 康志

Dec. 6th, 2022
last update: 12:32pm, December 6, 2022

Yasushi Kawase Advanced Core in Algorithm Design 1 / 30

Schedule

Lec. # Date Topics
1 10/4 Introduction, Stable matching
2 10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)
3 10/18 Greedy Algorithms (2/2)
4 10/25 Divide and Conquer (1/2)
5 11/1 Divide and Conquer (2/2)
6 11/8 Dynamic Programming (1/2)
7 11/15 Dynamic Programming (2/2)

— 11/22 Thursday Classes
8 11/29 Network Flow (1/2)
9 12/6 Network Flow (2/2)

10 12/13 NP and Computational Intractability
11 12/20 Approximation Algorithms (1/2)
12 12/27 Approximation Algorithms (2/2)
13 1/10 Randomized Algorithms

Yasushi Kawase Advanced Core in Algorithm Design 2 / 30

Outline

1 Edmonds–Karp algorithm

2 Bipartite matching

3 Image segmentation

4 Densest subgraph

Yasushi Kawase Advanced Core in Algorithm Design 3 / 30

Max-flow problem

Problem
• Input: flow network (G, s, t, c)

• Goal: find an s–t flow of maximum value val(f)

∑
v: e=(s,v)∈E fe −

∑
v: e=(v,s)∈E fe

Example

s t

ce = 5

2

6

4

2

3

3

1

4

Yasushi Kawase Advanced Core in Algorithm Design 4 / 30

Max-flow problem

Problem
• Input: flow network (G, s, t, c)

• Goal: find an s–t flow of maximum value val(f)

∑
v: e=(s,v)∈E fe −

∑
v: e=(v,s)∈E fe

Example

s t

5/5

2/2

3/6

2/4

2/2

3/3

3/3

1/1

6/9val(f) = 7

Yasushi Kawase Advanced Core in Algorithm Design 4 / 30

Algorithms for the max-flow problem

This lecture
• Ford–Fulkerson algorithm O(mC) time (pseudo polynomial-time)

• Scaling algorithm O(m2 logC) time (weak polynomial-time)

• Edmonds–Karp algorithm O(m2n) time (strong polynomial-time)

State of the Art
• O(mn) time [Orlin 2013]

• m1+o(1) logC time [Chen et al., 2022]

Yasushi Kawase Advanced Core in Algorithm Design 5 / 30

Ford–Fulkerson algorithm
Augment(f , c,P)

1 δ ←bottleneck capacity of augmenting path P;
2 foreach e ∈ P do
3 if e ∈ E then fe ← fe + δ;
4 else fē ← fē − δ;
5 Return f ;

Output of Augment(f , c,P) is a flow

Ford–Fulkerson algorithm

1 fe ← 0 for each e ∈ E ;
2 Gf ← residual network of G with respect to flow f ;
3 while ∃ an s–t path P in Gf do
4 f ← Augment(f , c,P);
5 Update Gf ;
6 Return f ;

Yasushi Kawase Advanced Core in Algorithm Design 6 / 30

Edmonds–Karp algorithm

Choosing augmenting path that uses the fewest edges (can be found via BFS)

Edmonds–Karp algorithm

1 fe ← 0 for each e ∈ E ;
2 Gf ← residual network of G with respect to flow f ;
3 while ∃ an s–t path in Gf do
4 P ← a shortest s–t path in Gf ;
5 f ← Augment(f , c,P);
6 Update Gf ;
7 Return f ;

Yasushi Kawase Advanced Core in Algorithm Design 7 / 30

Overview of analysis
d(f): the length (number of edges) of a shortest augmenting path

Lemma 1
d(f) never decreases during the execution

Lemma 2
d(f) increases at least once per m iterations

Theorem
Edmonds–Karp algorithm can be implemented to run in O(m2n) time

strongly polynomial time

• at most n − 1 different lengths
• at most m augmentation paths of length k

• O(m) time to find a shortest augmenting path

Yasushi Kawase Advanced Core in Algorithm Design 8 / 30

Lemma 1

Lemma 1
d(f) never decreases during the execution

• classify vertices based on their distance from s in Gf

• three types of edges: forward, sideways, backwards
• new edges added to Gf by augmentation must be backwards

s t· · ·

distance 0 1 2 3 d(f)− 1 d(f)

Yasushi Kawase Advanced Core in Algorithm Design 9 / 30

Lemma 2

Lemma 2
d(f) increases at least once per m iterations

• at least one forward edge is deleted from Gf per augmentation
• no forward edge will be added until d(f) increases
• within m iterations, there will be no paths using only forward edges

s t· · ·

distance 0 1 2 3 d(f)− 1 d(f)

Yasushi Kawase Advanced Core in Algorithm Design 10 / 30

Outline

1 Edmonds–Karp algorithm

2 Bipartite matching

3 Image segmentation

4 Densest subgraph

Yasushi Kawase Advanced Core in Algorithm Design 11 / 30

Bipartite matching problem

Problem
• Input: bipartite graph G = (A,B;E)

• Goal: find a maximum cardinality matching
a set of pairwise non-adjacent edges

Example

Yasushi Kawase Advanced Core in Algorithm Design 12 / 30

Bipartite matching problem

Problem
• Input: bipartite graph G = (A,B;E)

• Goal: find a maximum cardinality matching
a set of pairwise non-adjacent edges

Example

Yasushi Kawase Advanced Core in Algorithm Design 12 / 30

Reduction

Bipartite matching problem can be reduced to max-flow problem
Recall that there exists an integral max-flow

s t

ce = 1 (∀e)

Yasushi Kawase Advanced Core in Algorithm Design 13 / 30

Reduction

Bipartite matching problem can be reduced to max-flow problem
Recall that there exists an integral max-flow

s t

ce = 1 (∀e)

Yasushi Kawase Advanced Core in Algorithm Design 13 / 30

Application of Ford–Fulkerson algorithm

Theorem
Ford–Fulkerson algorithm finds a maximum matching in O(mn) time

• The size of the maximum matching = the value of the maximum flow

• The size of the maximum matching is O(n)

• Ford–Fulkerson: O(n) augmentations, each one takes O(m) time

O(mn) time

Yasushi Kawase Advanced Core in Algorithm Design 14 / 30

Hall’s theorem

G = (A,B;E): bipartite graph

Theorem
∃ matching M of size |A| ⇐⇒ |Γ(X)

vertices adjacent to X

| ≥ |X | (∀X ⊆ A)

(⇒) ∵ Γ(X) contains all the partners of X in M
(⇐) ∵ |Γ(S ∩A)| < |S ∩A| for the set of vertices S reachable from s in Gf

S

s t

ce = 1 (∀e)

Yasushi Kawase Advanced Core in Algorithm Design 15 / 30

Application of Hall’s theorem: Card magic
• Deal a standard deck of cards out into 13 piles of 4 cards each
• Is it always possible to select exactly 1 card from each pile, such that

the 13 selected cards contain exactly one card of each rank?

Yasushi Kawase Advanced Core in Algorithm Design 16 / 30

Application of Hall’s theorem: Card magic
• Deal a standard deck of cards out into 13 piles of 4 cards each
• Is it always possible to select exactly 1 card from each pile, such that

the 13 selected cards contain exactly one card of each rank?

Yasushi Kawase Advanced Core in Algorithm Design 16 / 30

Bipartite minimum vertex cover problem

Problem
• Input: bipartite graph G = (A,B;E)

• Goal: find a minimum cardinality vertex cover
a set of vertices that includes at least one endpoint of every edge

Example

Yasushi Kawase Advanced Core in Algorithm Design 17 / 30

Bipartite minimum vertex cover problem

Problem
• Input: bipartite graph G = (A,B;E)

• Goal: find a minimum cardinality vertex cover
a set of vertices that includes at least one endpoint of every edge

Example

Yasushi Kawase Advanced Core in Algorithm Design 17 / 30

Weak duality

Proposition
|M | ≤ |C | for any matching M and vertex cover C

∵ each e ∈ M must be covered by a distinct vertex

Example

Yasushi Kawase Advanced Core in Algorithm Design 18 / 30

Strong duality

Kőnig’s theorem
maxM :matching |M | = minC : vertex cover |C |

• S : the set of vertices reachable from s in Gf

the residual graph at the end of Ford–Fulkerson algorithm

• (A \ S) ∪ (B ∩ S) is VC as 6 ∃(u, v) ∈ E such that u ∈ A ∩ S and v ∈ B \ S

S

s t

ce = 1 (∀e)

Yasushi Kawase Advanced Core in Algorithm Design 19 / 30

Quiz

Find a maximum matching and a minimum vertex cover.

Yasushi Kawase Advanced Core in Algorithm Design 20 / 30

Outline

1 Edmonds–Karp algorithm

2 Bipartite matching

3 Image segmentation

4 Densest subgraph

Yasushi Kawase Advanced Core in Algorithm Design 21 / 30

Image segmentation
Problem
• Input: image
• Goal: label each pixel as either the foreground or the background

Example

Yasushi Kawase Advanced Core in Algorithm Design 22 / 30

Segmentation problem
Problem
• Input:

• undirected graph G = (V ,E) (V : pixel, E : neighbor)
• likelihood ai ∈ R+ that i ∈ V belongs to the foreground
• likelihood bj ∈ R+ that j ∈ V belongs to the background
• separation penalty pij ∈ R+ for each {i, j} ∈ E

• Goal: find X ⊆ V that maximizes q(X) :=
∑
i∈X

ai +
∑

j∈V\X

bj −
∑

{i,j}∈δ(X)

pij

Yasushi Kawase Advanced Core in Algorithm Design 23 / 30

Reduction to minimum cut
Observation
maximizing q(X) ⇐⇒ minimizing q̄(X)

• q(X) :=
∑

i∈X ai +
∑

j∈V\X bj −
∑

{i,j}∈δ(X) pij

• q̄(X) :=
∑

i∈V (ai +bi)−q(X) =
∑

i∈X bi +
∑

j∈V\X aj +
∑

{i,j}∈δ(X) pij

q̄(S \ {s}) = cap(S)
S

s t

...
i

...
j...

ai

aj

bi

bj

pij pij

Yasushi Kawase Advanced Core in Algorithm Design 24 / 30

Result
Algorithm

1 Construct the corresponding flow network;
2 Find the minimum-cut S for the network;
3 Return S \ {s};

Theorem
The solution to the segmentation problem can be obtained by a
minimum-cut algorithm (e.g., O(|E |2|V |) time)

Yasushi Kawase Advanced Core in Algorithm Design 25 / 30

Outline

1 Edmonds–Karp algorithm

2 Bipartite matching

3 Image segmentation

4 Densest subgraph

Yasushi Kawase Advanced Core in Algorithm Design 26 / 30

Densest subgraph problem

Problem
• Input: undirected graph G = (V ,E)

• Goal: find a nonempty S ⊆ V that maximizes dens(S) := |E(S)

{
{u, v} ∈ E | u, v ∈ S

}
|/|S |

Example

O(mn) possibilities of density: `/k for k = 1, 2, . . . ,n and ` = 0, 1, . . . ,m

sufficient to solve the existence of S s.t. dens(S) > α

Yasushi Kawase Advanced Core in Algorithm Design 27 / 30

Densest subgraph problem

Problem
• Input: undirected graph G = (V ,E)

• Goal: find a nonempty S ⊆ V that maximizes dens(S) := |E(S)

{
{u, v} ∈ E | u, v ∈ S

}
|/|S |

Example

dens(S) = 5/4

O(mn) possibilities of density: `/k for k = 1, 2, . . . ,n and ` = 0, 1, . . . ,m

sufficient to solve the existence of S s.t. dens(S) > α

Yasushi Kawase Advanced Core in Algorithm Design 27 / 30

Reduction
Proposition
• cap(S) = mn + 2(|S | − 1)(α− dens(S \ {s}))

• cap(S) < mn ⇐⇒ dens(S \ {s}) > α

S

s t

...
u

...
v

...

m

m

m + 2α− deg(u)

m + 2α− deg(v)

1 1

Yasushi Kawase Advanced Core in Algorithm Design 28 / 30

Proof of Proposition

cap(S) =
∑

u∈S\{s}

(m + 2α− deg(u)) +
∑

u∈V\S

m +
∑

{u,v}∈E: u∈S, v 6∈S

1

= mn + 2α(|S | − 1)−

 ∑
u∈S\{s}

deg(u)−
∑

{u,v}∈E: u∈S, v 6∈S

1


= mn + 2α(|S | − 1)− 2

∣∣E [S \ {s}]
∣∣

= mn + 2(|S | − 1)(α− dens(S \ {s}))

S

u

S

s t

...
u

...
v

...

m

m

m + 2α− deg(u)

m + 2α− deg(v)

1 1

Yasushi Kawase Advanced Core in Algorithm Design 29 / 30

Algorithm

• Sort P :=
{
`/k | k ∈ {1, 2, . . . ,n}, ` ∈ {0, 1, . . . ,m}

}
O(mn log n) time

• compute max{α ∈ P | dens(S) ≤ α (∀S)} by binary search
• O(log n) min-cut problems (with n + 2 vertices, m + 2n edges)

• min-cut problem can be solve in O(m2n) time by Edmonds–Karp

total running time is O(m2n log n)

Yasushi Kawase Advanced Core in Algorithm Design 30 / 30

	Edmonds–Karp algorithm
	Bipartite matching
	Image segmentation
	Densest subgraph

