Advanced Core in Algorithm Design #9 算法設計要論 第9回

Yasushi Kawase 河瀬 康志

Dec. 6th, 2022

last update: 12:32pm, December 6, 2022

Schedule

Lec. #	Date	Topics
1	10/4	Introduction, Stable matching
2	10/11	Basics of Algorithm Analysis, Greedy Algorithms $(1/2)$
3	10/18	Greedy Algorithms $(2/2)$
4	10/25	Divide and Conquer $(1/2)$
5	11/1	Divide and Conquer $(2/2)$
6	11/8	Dynamic Programming $(1/2)$
7	11/15	Dynamic Programming $(2/2)$
_	11/22	Thursday Classes
8	11/29	Network Flow $(1/2)$
9	12/6	Network Flow (2/2)
10	12/13	NP and Computational Intractability
11	12/20	Approximation Algorithms $(1/2)$
12	12/27	Approximation Algorithms $(2/2)$
13	1/10	Randomized Algorithms

Outline

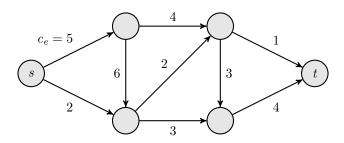
- Edmonds–Karp algorithm
- Bipartite matching
- Image segmentation
- Densest subgraph

Max-flow problem

Problem

• Input: flow network (G, s, t, c)

- $\sum_{v: e=(s,v)\in E} f_e \sum_{v: e=(v,s)\in E} f_e$
- Goal: find an s-t flow of maximum value val(f)

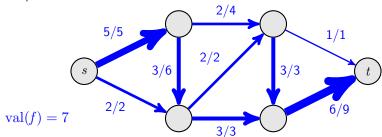


Max-flow problem

Problem

• Input: flow network (G, s, t, c)

- $\left[\sum_{v: e=(s,v)\in E} f_e \sum_{v: e=(v,s)\in E} f_e\right]$
- Goal: find an s-t flow of maximum value val(f)



Algorithms for the max-flow problem

This lecture

- $\bullet \ \, \mathsf{Ford-Fulkerson \ algorithm} \ \, \longrightarrow \ \, \mathrm{O}(\mathit{mC}) \ \, \mathsf{time} \ \, \mathsf{(pseudo \ polynomial-time)}$
- Scaling algorithm \longrightarrow $O(m^2 \log C)$ time (weak polynomial-time)
- Edmonds–Karp algorithm \longrightarrow $O(m^2n)$ time (strong polynomial-time)

State of the Art

- $\mathrm{O}(mn)$ time [Orlin 2013]
- $m^{1+o(1)}\log C$ time [Chen et al., 2022]

Ford-Fulkerson algorithm

$\operatorname{Augment}(f, c, P)$

```
1 \delta \leftarrow bottleneck capacity of augmenting path P;

2 foreach e \in P do

3 | if e \in E then f_e \leftarrow f_e + \delta;

4 | else f_{\overline{e}} \leftarrow f_{\overline{e}} - \delta;

5 Return f;
```

Output of Augment(f, c, P) is a flow

Ford-Fulkerson algorithm

Edmonds-Karp algorithm

Choosing augmenting path that uses the fewest edges (can be found via BFS)

Edmonds-Karp algorithm

```
1 f_e \leftarrow 0 for each e \in E;

2 G_f \leftarrow residual network of G with respect to flow f;

3 while \exists an s-t path in G_f do

4 P \leftarrow a shortest s-t path in G_f;

5 f \leftarrow \operatorname{Augment}(f, c, P);

6 Update G_f;

7 Return f;
```

Overview of analysis

d(f): the length (number of edges) of a shortest augmenting path

Lemma 1

d(f) never decreases during the execution

Lemma 2

d(f) increases at least once per m iterations

Theorem

strongly polynomial time

Edmonds–Karp algorithm can be implemented to run in $O(m^2n)$ time

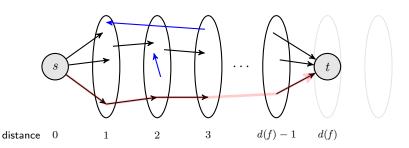
- ullet at most n-1 different lengths
- \bullet at most m augmentation paths of length k
- ullet $\mathrm{O}(m)$ time to find a shortest augmenting path

Lemma 1

Lemma 1

d(f) never decreases during the execution

- ullet classify vertices based on their distance from s in G_f
- three types of edges: forward, sideways, backwards
- ullet new edges added to G_f by augmentation must be backwards

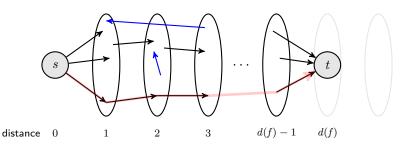


Lemma 2

Lemma 2

d(f) increases at least once per m iterations

- ullet at least one forward edge is deleted from G_f per augmentation
- no forward edge will be added until d(f) increases
- ullet within m iterations, there will be no paths using only forward edges



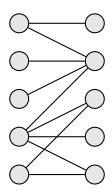
Outline

- Edmonds–Karp algorithm
- 2 Bipartite matching
- Image segmentation
- Densest subgraph

Bipartite matching problem

Problem

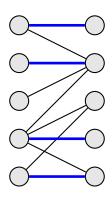
- ullet Input: bipartite graph G=(A,B;E) a set of pairwise non-adjacent edges
- Goal: find a maximum cardinality matching



Bipartite matching problem

Problem

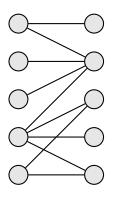
- Goal: find a maximum cardinality matching

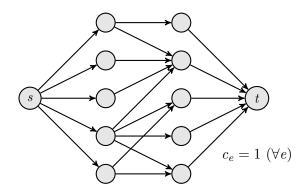


Reduction

Bipartite matching problem can be reduced to \max -flow problem

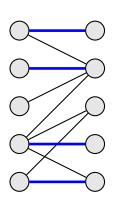
Recall that there exists an integral max-flow

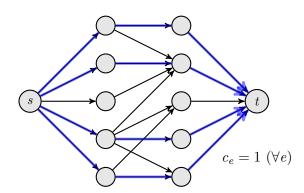




Reduction

Bipartite matching problem can be reduced to max-flow problem Recall that there exists an integral max-flow





Application of Ford-Fulkerson algorithm

Theorem

Ford–Fulkerson algorithm finds a maximum matching in O(mn) time

- The size of the maximum matching = the value of the maximum flow
- The size of the maximum matching is $\mathrm{O}(n)$
- Ford–Fulkerson: $\mathrm{O}(n)$ augmentations, each one takes $\mathrm{O}(m)$ time
 - \longrightarrow O(mn) time

Hall's theorem

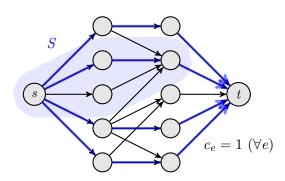
G = (A, B; E): bipartite graph

Theorem

vertices adjacent to X

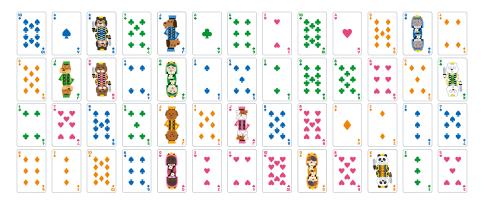
 \exists matching M of size $|A| \iff |\Gamma(X)| \ge |X| \ (\forall X \subseteq A)$

- (\Rightarrow) :: $\Gamma(X)$ contains all the partners of X in M
- (\Leftarrow) : $|\Gamma(S \cap A)| < |S \cap A|$ for the set of vertices S reachable from s in G_f



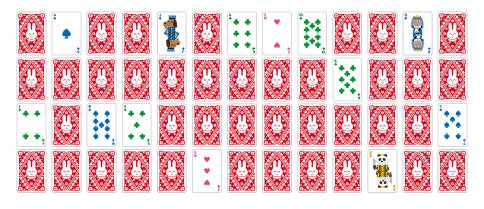
Application of Hall's theorem: Card magic

- ullet Deal a standard deck of cards out into 13 piles of 4 cards each
- Is it always possible to select exactly 1 card from each pile, such that the 13 selected cards contain exactly one card of each rank?



Application of Hall's theorem: Card magic

- Deal a standard deck of cards out into 13 piles of 4 cards each
- Is it always possible to select exactly 1 card from each pile, such that the 13 selected cards contain exactly one card of each rank?

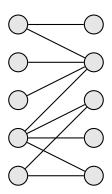


Bipartite minimum vertex cover problem

Problem

- Input: bipartite graph G = (A, B; E)
- Goal: find a minimum cardinality vertex cover

a set of vertices that includes at least one endpoint of every edge

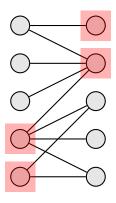


Bipartite minimum vertex cover problem

Problem

- Input: bipartite graph G = (A, B; E)
- Goal: find a minimum cardinality vertex cover

a set of vertices that includes at least one endpoint of every edge

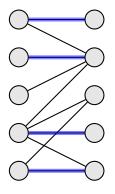


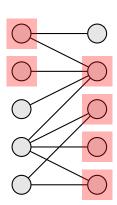
Weak duality

Proposition

 $|M| \leq |C|$ for any matching M and vertex cover C

 \because each $e \in M$ must be covered by a distinct vertex





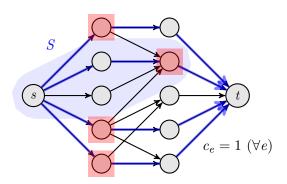
Strong duality

the residual graph at the end of Ford–Fulkerson algorithm

Kőnig's theorem

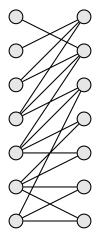
 $\max_{M: \, \mathsf{matching}} |M| = \min_{C: \, \mathsf{vertex} \, \, \mathsf{cover}} |C|$

- S: the set of vertices reachable from s in G_f
- $(A\setminus S)\cup (B\cap S)$ is VC as $\not\exists (u,v)\in E$ such that $u\in A\cap S$ and $v\in B\setminus S$



Quiz

Find a maximum matching and a minimum vertex cover.



Outline

- $lue{1}$ Edmonds–Karp algorithm
- 2 Bipartite matching
- Image segmentation
- Densest subgraph

Image segmentation

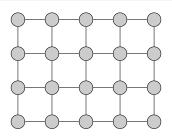
Problem

- Input: image
- Goal: label each pixel as either the foreground or the background

Segmentation problem

Problem

- Input:
 - undirected graph G = (V, E) (V: pixel, E: neighbor)
 - likelihood $a_i \in \mathbb{R}_+$ that $i \in V$ belongs to the foreground
 - likelihood $b_j \in \mathbb{R}_+$ that $j \in V$ belongs to the background
 - separation penalty $p_{ij} \in \mathbb{R}_+$ for each $\{i,j\} \in E$
- $\bullet \ \ \text{Goal: find} \ X \subseteq V \ \text{that maximizes} \ q(X) := \sum_{i \in X} a_i + \sum_{j \in V \setminus X} b_j \sum_{\{i,j\} \in \delta(X)} p_{ij}$

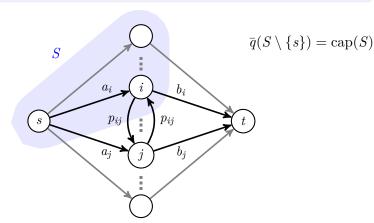


Reduction to minimum cut

Observation

 $\text{maximizing } q(X) \iff \text{minimizing } \bar{q}(X)$

- $q(X) := \sum_{i \in X} a_i + \sum_{j \in V \setminus X} b_j \sum_{\{i,j\} \in \delta(X)} p_{ij}$
- $\bar{q}(X) := \sum_{i \in V} (a_i + b_i) q(X) = \sum_{i \in X} b_i + \sum_{j \in V \setminus X} a_j + \sum_{\{i,j\} \in \delta(X)} p_{ij}$



Result

Algorithm

- 1 Construct the corresponding flow network;
- 2 Find the minimum-cut S for the network;
- 3 Return $S \setminus \{s\}$;

Theorem

The solution to the segmentation problem can be obtained by a minimum-cut algorithm (e.g., $O(|E|^2|V|)$ time)

Outline

- $lue{1}$ Edmonds–Karp algorithm
- 2 Bipartite matching
- Image segmentation
- Densest subgraph

Densest subgraph problem

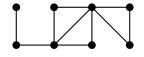
Problem

• Input: undirected graph G = (V, E)

$$\left\{ \left\{ \left\{ u,v\right\} \in E\mid u,v\in S\right\} \right.\right\}$$

• Goal: find a nonempty $S \subseteq V$ that maximizes $\operatorname{dens}(S) \coloneqq |\operatorname{{\it E}(S)}|/|S|$

Example



O(mn) possibilities of density: ℓ/k for $k=1,2,\ldots,n$ and $\ell=0,1,\ldots,m$

 \longrightarrow sufficient to solve the existence of S s.t. $dens(S) > \alpha$

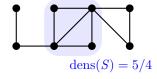
Densest subgraph problem

Problem

• Input: undirected graph G = (V, E)

- $\left\{ \left\{ u,v\right\} \in E\mid u,v\in S\right\}$
- Goal: find a nonempty $S \subseteq V$ that maximizes $\operatorname{dens}(S) \coloneqq |\operatorname{\underline{\it E}(\it S)}|/|S|$

Example



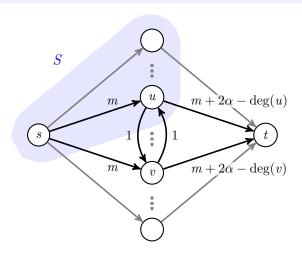
O(mn) possibilities of density: ℓ/k for $k=1,2,\ldots,n$ and $\ell=0,1,\ldots,m$

 \longrightarrow sufficient to solve the existence of S s.t. $dens(S) > \alpha$

Reduction

Proposition

- $\operatorname{cap}(S) = mn + 2(|S| 1)(\alpha \operatorname{dens}(S \setminus \{s\}))$
- $\operatorname{cap}(S) < mn \iff \operatorname{dens}(S \setminus \{s\}) > \alpha$



Proof of Proposition

$$\operatorname{cap}(S) = \sum_{u \in S \setminus \{s\}} (m + 2\alpha - \deg(u)) + \sum_{u \in V \setminus S} m + \sum_{\{u,v\} \in E: u \in S, v \notin S} 1$$

$$= mn + 2\alpha(|S| - 1) - \left(\sum_{u \in S \setminus \{s\}} \deg(u) - \sum_{\{u,v\} \in E: u \in S, v \notin S} 1\right)$$

$$= mn + 2\alpha(|S| - 1) - 2|E[S \setminus \{s\}]|$$

$$= mn + 2(|S| - 1)(\alpha - \operatorname{dens}(S \setminus \{s\}))$$

Algorithm

- $\bullet \ \, \mathsf{Sort} \,\, P \coloneqq \big\{\ell/k \mid k \in \{1,2,\ldots,n\}, \,\, \ell \in \{0,1,\ldots,m\} \big\} \quad \, \, \mathsf{O}(\mathit{mn}\log n) \,\, \mathsf{time}$
- compute $\max\{\alpha \in P \mid \operatorname{dens}(S) \leq \alpha \ (\forall S)\}$ by binary search
 - $O(\log n)$ min-cut problems (with n+2 vertices, m+2n edges)
 - min-cut problem can be solve in $\mathrm{O}(m^2n)$ time by Edmonds–Karp
 - \longrightarrow total running time is $O(m^2 n \log n)$