Advanced Core in Algorithm Design #8 算法設計要論 第8回

Yasushi Kawase 河瀬 康志

Nov. 29th, 2022

last update: 3:27pm, November 29, 2022

Schedule

Lec. #	Date	Topics
1	10/4	Introduction, Stable matching
2	10/11	Basics of Algorithm Analysis, Greedy Algorithms $(1/2)$
3	10/18	Greedy Algorithms $(2/2)$
4	10/25	Divide and Conquer $(1/2)$
5	11/1	Divide and Conquer $(2/2)$
6	11/8	Dynamic Programming $(1/2)$
7	11/15	Dynamic Programming $(2/2)$
	11/22	Thursday Classes
8	11/29	Network Flow $(1/2)$
9	12/6	Network Flow $(2/2)$
10	12/13	NP and Computational Intractability
11	12/20	Approximation Algorithms $(1/2)$
12	12/27	Approximation Algorithms $(2/2)$
13	1/10	Randomized Algorithms

Outline

- Max-flow and Min-cut Problems
- Augmenting path algorithm
- Capacity-scaling algorithm

Flow Network

Flow network (G, s, t, c)

- directed graph G=(V,E) with source $s\in V$ and sink $t\in V$
- capacity c_e for each $e \in E$

s-t flow f

Capacity constraint $0 \le f_e \le c_e$ for all $e \in E$

Conservation of flows $\sum_{u: e=(u,v)\in E} f_e = \sum_{u: (v,u)\in E} f_e \ (\forall v\in V\setminus \{s,t\})$

Flow Network

Flow network (G, s, t, c)

- directed graph G=(V,E) with source $s\in V$ and sink $t\in V$
- capacity c_e for each $e \in E$

s-t flow f

Capacity constraint $0 \le f_e \le c_e$ for all $e \in E$

Conservation of flows $\sum_{u: e=(u,v)\in E} f_e = \sum_{u: (v,u)\in E} f_e \ (\forall v\in V\setminus \{s,t\})$

Max-flow problem

Problem

• Input: flow network (G, s, t, c)

- $\sum_{v: e=(s,v)\in E} f_e \sum_{v: e=(v,s)\in E} f_e$
- Goal: find an s-t flow of maximum value val(f)

Max-flow problem

Problem

• Input: flow network (G, s, t, c)

- $\left[\sum_{v: e=(s,v)\in E} f_e \sum_{v: e=(v,s)\in E} f_e\right]$
- Goal: find an s-t flow of maximum value val(f)

Min-cut Problem

$s\!\!-\!t$ cut

a partition (S, T) of the vertices with $s \in S$ and $t \in T$

Problem

• Input: flow network (G, s, t, c)

 $\sum_{e=(u,v)\in E:\,u\in S,\,v\not\in S}\,c_e$

• Goal: find an s-t cut of minimum capacity $\overline{\operatorname{cap}(S)}$

Min-cut Problem

s-t cut

a partition (S, T) of the vertices with $s \in S$ and $t \in T$

Problem

• Input: flow network (G, s, t, c)

 $\sum_{e=(u,v)\in E:\,u\in S,\,v\not\in S}c_e$

• Goal: find an s-t cut of minimum capacity $\operatorname{cap}(S)$

Weak duality

Lemma

 $\operatorname{val}(f) \leq \operatorname{cap}(S) \text{ for any flow } f \text{ and cut } (S,\,T)$

Proof

$$\begin{aligned} \operatorname{val}(f) &= \sum_{v \in S} \left[\sum_{u: \ e = (v, u) \in E} f_e - \sum_{u: \ e = (u, v) \in E} f_e \right] \\ &= \sum_{e: \ \text{out of } S} f_e - \sum_{e: \ \text{into } S} f_e \\ &\leq \sum_{e: \ \text{out of } S} f_e \leq \sum_{e: \ \text{out of } S} c_e = c(S) \end{aligned}$$

Weak duality

Lemma

 $val(f) \le cap(S)$ for any flow f and cut (S, T)

Proof

$$\begin{aligned} \operatorname{val}(f) &= \sum_{v \in S} \left[\sum_{u: \ e = (v, u) \in E} f_e - \sum_{u: \ e = (u, v) \in E} f_e \right] \\ &= \sum_{e: \ \text{out of } S} f_e - \sum_{e: \ \text{into } S} f_e \\ &\leq \sum_{e: \ \text{out of } S} f_e \leq \sum_{e: \ \text{out of } S} c_e = c(S) \end{aligned}$$

we will see $\max_f \operatorname{val}(f) = \min_{(S,T)} \operatorname{cap}(S)$

Outline

- Max-flow and Min-cut Problems
- 2 Augmenting path algorithm
- Capacity-scaling algorithm

Residual network

Residual network
$$(G_f, s, t, c_f)$$
 of G w.r.t. f reverse edge of e residual graph $G_f = (V, E_f)$, $E_f = \{e \mid e \in E, f_e < c_e\} \cup \{\overline{e} \mid e \in E, f_e > 0\}$ residual capacity $c_f(e) = \begin{cases} c_e - f_e & \text{if } e \in E \\ f_e & \text{if } \overline{e} \in E \end{cases}$

Augmenting path

- ullet augmenting path: a simple $s ext{-}t$ path in the residual network G_f
- bottleneck capacity: the minimum residual capacity of a path

bottleneck capacity = 1 $3/4 \qquad 1/3 \qquad 3/4 \qquad 2/3$ $s \qquad 2/2 \qquad t \qquad 3/4 \qquad 2/3$ $0/1 \qquad 2/2 \qquad 1/1 \qquad 2/2$ original network and flow residual network and augmenting path

Ford-Fulkerson algorithm

Augment(f, c, P)

```
1 \delta —bottleneck capacity of augmenting path P;

2 foreach e \in P do

3 if e \in E then f_e \leftarrow f_e + \delta;

4 else f_{\overline{e}} \leftarrow f_{\overline{e}} - \delta;

5 Return f;
```

Output of $\operatorname{Augment}(f, c, P)$ is a flow

Ford-Fulkerson algorithm

Termination and Running time

Suppose that $c_e \in \mathbb{Z}_{++} \ (\forall e \in E)$

Observation

 \forall iterations, the flow value f_e and the residual capacity of G_f are integral

Observation

 \forall iterations, val(f) increases at least 1

Theorem

- ullet Ford-Fulkerson algorithm terminates in at most $C\coloneqq \sum_{e\in E} c_e$ steps
- \bullet Ford–Fulkerson algorithm can be implemented to run in $\mathrm{O}(\mathit{mC})$ time

s-t path can be found in $\mathrm{O}(m)$ time by BFS or DFS

Correctness

Theorem

Ford-Fulkerson algorithm outputs a max-flow

Proof

- When it terminates, $ot \exists s t \text{ path in } G_f$
- Let S be the set of vertices reachable from s in G_f $(s \in S \text{ and } t \not \in S)$
- $\operatorname{val}(f) = \sum_{e: \text{ out of } S} f_e \sum_{e: \text{ into } S} f_e = \sum_{e: \text{ out of } S} c_e = \operatorname{cap}(S)$
- By the weak duality, f is a max-flow and $(S,\,V\setminus S)$ is a min-cut $\widehat{\mathrm{val}(f')\leq \mathrm{cap}(A)}$

Max-flow Min-cut theorem

Theorem

$$\max_{f: flow} val(f) = \min_{(S,T): cut} cap(S)$$

$$val(f) = cap(S) = 4$$

What is the maximum value of s-t flow?

Outline

- Max-flow and Min-cut Problems
- 2 Augmenting path algorithm
- Capacity-scaling algorithm

Bad example

Ford–Fulkerson is too slow (exponential time w.r.t. input size)

- $s \rightarrow a \rightarrow b \rightarrow t$
- $s \to b \to a \to t$
- $\bullet \ s \to a \to b \to t$
- $s \rightarrow b \rightarrow a \rightarrow t$
- •

we'd like to choose "good" augmenting path

Capacity scaling

- Choosing augmenting paths with large bottleneck capacity
- $G_f(\Delta)$: subgraph of G_f consisting only of edges e with $c_f(e) \geq \Delta$

Scaling algorithm

```
\begin{array}{lll} \mathbf{1} & \Delta \leftarrow \text{largest power of } 2 \text{ that is no larger than } \max_{e: \text{ out of } s} c_e; \\ \mathbf{2} & G_f \leftarrow \text{residual network of } G \text{ with respect to flow } f; \\ \mathbf{3} & \textbf{while } \Delta \geq 1 \textbf{ do} \\ \mathbf{4} & \textbf{while } \exists \text{ an } s\text{-}t \text{ path } P \text{ in } G_f(\Delta) \textbf{ do} \\ \mathbf{5} & f \leftarrow \text{Augment}(f,c,P); \\ \mathbf{6} & Update \ G_f(\Delta); \\ \mathbf{7} & \Delta \leftarrow \Delta/2; \end{array}
```


Analyzing the algorithm

Lemma

$$\max_{e: \text{ out of } s} c_e$$

The number of scaling phases is $1 + \lfloor \log_2 C \rfloor$

$$\because \Delta = 2^{\lfloor \log_2 C \rfloor}, 2^{\lfloor \log_2 C \rfloor - 1}, \dots, 2^0$$

Lemma

the set of vertices reachable from s in $\mathit{G}_{f}(\Delta)$

At the end of a Δ -scaling phase, $\operatorname{cap}(S) \leq \operatorname{val}(f) + m\Delta$ see next slide

Lemma

The number of augmentations in each scaling phase is at most 2m

- at the beginning of Δ -scaling phase, max-flow $\leq \operatorname{val}(f) + m(2\Delta)$
- ullet each augmentation increases $\operatorname{val}(f)$ by at least Δ

Theorem

weakly polynomial time

The scaling algorithm can be implemented to run in $O(m^2 \log C)$ time

finding an augmenting path takes $\mathrm{O}(m)$ time

Proof of the lemma

Lemma

the set of vertices reachable from s in $\mathit{G}_{f}(\Delta)$

At the end of a Δ -scaling phase, $\operatorname{cap}(S) \leq \operatorname{val}(f) + m\Delta$

Proof

$$\begin{split} \operatorname{val}(f) &= \sum_{e: \text{ out of } S} f_e - \sum_{e: \text{ into } S} f_e \\ &\geq \sum_{e: \text{ out of } S} (c_e - \Delta) - \sum_{e: \text{ into } S} \Delta \\ &\geq \operatorname{cap}(S) - m\Delta \end{split}$$

Summary

- Ford–Fulkerson algorithm \longrightarrow O(mC) time (pseudo polynomial-time)
- Scaling algorithm \longrightarrow O($m^2 \log C$) time (weak polynomial-time)

Next week

• Edmonds–Karp algorithm \longrightarrow $O(m^2n)$ time (strong polynomial-time)

State of the Art

- $\mathrm{O}(mn)$ time [Orlin 2013]
- $m^{1+o(1)}\log C$ time [Chen et al., 2022]