
Advanced Core in Algorithm Design #8
算法設計要論 第 8回

Yasushi Kawase
河瀬 康志

Nov. 29th, 2022
last update: 3:27pm, November 29, 2022

Yasushi Kawase Advanced Core in Algorithm Design 1 / 23



Schedule

Lec. # Date Topics
1 10/4 Introduction, Stable matching
2 10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)
3 10/18 Greedy Algorithms (2/2)
4 10/25 Divide and Conquer (1/2)
5 11/1 Divide and Conquer (2/2)
6 11/8 Dynamic Programming (1/2)
7 11/15 Dynamic Programming (2/2)

— 11/22 Thursday Classes
8 11/29 Network Flow (1/2)
9 12/6 Network Flow (2/2)

10 12/13 NP and Computational Intractability
11 12/20 Approximation Algorithms (1/2)
12 12/27 Approximation Algorithms (2/2)
13 1/10 Randomized Algorithms

Yasushi Kawase Advanced Core in Algorithm Design 2 / 23



Outline

1 Max-flow and Min-cut Problems

2 Augmenting path algorithm

3 Capacity-scaling algorithm

Yasushi Kawase Advanced Core in Algorithm Design 3 / 23



Flow Network
Flow network (G, s, t, c)
• directed graph G = (V ,E) with source s ∈ V and sink t ∈ V

• capacity ce for each e ∈ E

s–t flow f
Capacity constraint 0 ≤ fe ≤ ce for all e ∈ E
Conservation of flows

∑
u: e=(u,v)∈E fe =

∑
u: (v,u)∈E fe (∀v ∈ V \ {s, t})

Example

s t

ce = 5

2

6

4

2

3

3

1

4

Yasushi Kawase Advanced Core in Algorithm Design 4 / 23



Flow Network
Flow network (G, s, t, c)
• directed graph G = (V ,E) with source s ∈ V and sink t ∈ V

• capacity ce for each e ∈ E

s–t flow f
Capacity constraint 0 ≤ fe ≤ ce for all e ∈ E
Conservation of flows

∑
u: e=(u,v)∈E fe =

∑
u: (v,u)∈E fe (∀v ∈ V \ {s, t})

Example

s t

5/5

0/2

5/6

0/4

2/2

3/3

1/3

1/1

4/9
s–t flow

Yasushi Kawase Advanced Core in Algorithm Design 4 / 23



Max-flow problem

Problem
• Input: flow network (G, s, t, c)

• Goal: find an s–t flow of maximum value val(f )

∑
v: e=(s,v)∈E fe −

∑
v: e=(v,s)∈E fe

Example

s t

c(e) = 5

2

6

4

2

3

3

1

4

Yasushi Kawase Advanced Core in Algorithm Design 5 / 23



Max-flow problem

Problem
• Input: flow network (G, s, t, c)

• Goal: find an s–t flow of maximum value val(f )

∑
v: e=(s,v)∈E fe −

∑
v: e=(v,s)∈E fe

Example

s t

5/5

2/2

3/6

2/4

2/2

3/3

3/3

1/1

6/9val(f ) = 7

Yasushi Kawase Advanced Core in Algorithm Design 5 / 23



Min-cut Problem
s–t cut
a partition (S ,T) of the vertices with s ∈ S and t ∈ T

Problem
• Input: flow network (G, s, t, c)

• Goal: find an s–t cut of minimum capacity cap(S)

∑
e=(u,v)∈E: u∈S, v 6∈S ce

Example

s t

c(e) = 5

2

6

4

2

3

3

1

4

Yasushi Kawase Advanced Core in Algorithm Design 6 / 23



Min-cut Problem
s–t cut
a partition (S ,T) of the vertices with s ∈ S and t ∈ T

Problem
• Input: flow network (G, s, t, c)

• Goal: find an s–t cut of minimum capacity cap(S)

∑
e=(u,v)∈E: u∈S, v 6∈S ce

Example

cap(S) = 11
S

T
s t

c(e) = 5

2

6

4

2

3

3

1

4

Yasushi Kawase Advanced Core in Algorithm Design 6 / 23



Weak duality

Lemma
val(f ) ≤ cap(S) for any flow f and cut (S ,T)

Proof
val(f ) =

∑
v∈S

[∑
u: e=(v,u)∈E fe

flow out of v

−
∑

u: e=(u,v)∈E fe

flow into v ]
=

∑
e: out of S

fe −
∑

e: into S
fe

≤
∑

e: out of S
fe ≤

∑
e: out of S

ce = c(S)

s t

we will see maxf val(f ) = min(S,T) cap(S)
Yasushi Kawase Advanced Core in Algorithm Design 7 / 23



Weak duality

Lemma
val(f ) ≤ cap(S) for any flow f and cut (S ,T)

Proof
val(f ) =

∑
v∈S

[∑
u: e=(v,u)∈E fe

flow out of v

−
∑

u: e=(u,v)∈E fe

flow into v ]
=

∑
e: out of S

fe −
∑

e: into S
fe

≤
∑

e: out of S
fe ≤

∑
e: out of S

ce = c(S)

s t

we will see maxf val(f ) = min(S,T) cap(S)
Yasushi Kawase Advanced Core in Algorithm Design 7 / 23



Outline

1 Max-flow and Min-cut Problems

2 Augmenting path algorithm

3 Capacity-scaling algorithm

Yasushi Kawase Advanced Core in Algorithm Design 8 / 23



Residual network

Residual network (Gf , s, t, cf ) of G w.r.t. f
residual graph Gf = (V ,Ef ), Ef = {e | e ∈ E , fe < ce} ∪ { ē

reverse edge of e

| e ∈ E , fe > 0}

residual capacity cf (e) =

{
ce − fe if e ∈ E
fe if ē ∈ E

s t

3/4

0/1

2/2

1/3

2/2

original network and flow

s t

1

3

1

2

2

1

2

residual network

Yasushi Kawase Advanced Core in Algorithm Design 9 / 23



Augmenting path

• augmenting path: a simple s–t path in the residual network Gf

• bottleneck capacity: the minimum residual capacity of a path

s t

3/4

0/1

2/2

1/3

2/2

original network and flow

bottleneck capacity = 1

s t

1
3

1

2

2
1

2

residual network and
augmenting path

s t

3/4

1/1

1/2

2/3

2/2

new flow

Yasushi Kawase Advanced Core in Algorithm Design 10 / 23



Ford–Fulkerson algorithm

Augment(f , c,P)

1 δ ←bottleneck capacity of augmenting path P;
2 foreach e ∈ P do
3 if e ∈ E then fe ← fe + δ;
4 else fē ← fē − δ;
5 Return f ;

Output of Augment(f , c,P) is a flow

Ford–Fulkerson algorithm

1 fe ← 0 for each e ∈ E ;
2 Gf ← residual network of G with respect to flow f ;
3 while ∃ an s–t path P in Gf do
4 f ← Augment(f , c,P);
5 Update Gf ;

Yasushi Kawase Advanced Core in Algorithm Design 11 / 23



Example

s t

0/2

0/1

0/3

0/4

0/2

s t

2

1

3

4

2

δ = 2

s t

2/2

0/1

2/3

0/4

2/2

s t

2

1

12

4

2

δ = 1

s t

2/2

1/1

1/3

1/4

2/2

s t

2

1

21

3
1

2

Yasushi Kawase Advanced Core in Algorithm Design 12 / 23



Termination and Running time

Suppose that ce ∈ Z++ (∀e ∈ E)

Observation
∀ iterations, the flow value fe and the residual capacity of Gf are integral

Observation
∀ iterations, val(f ) increases at least 1

Theorem
• Ford–Fulkerson algorithm terminates in at most C :=

∑
e∈E ce steps

• Ford–Fulkerson algorithm can be implemented to run in O(mC) time

s–t path can be found in O(m) time by BFS or DFS

Yasushi Kawase Advanced Core in Algorithm Design 13 / 23



Correctness
Theorem
Ford–Fulkerson algorithm outputs a max-flow

Proof
• When it terminates, 6 ∃ s–t path in Gf

• Let S be the set of vertices reachable from s in Gf (s ∈ S and t 6∈ S)

• val(f ) =
∑

e: out of S fe −
∑

e: into S fe =
∑

e: out of S ce = cap(S)

• By the weak duality
val(f ′) ≤ cap(A)

, f is a max-flow and (S ,V \ S) is a min-cut

s

Gf

S

s

0

0

ce

ce′

G

S

Yasushi Kawase Advanced Core in Algorithm Design 14 / 23



Max-flow Min-cut theorem

Theorem
maxf : flow val(f ) = min(S,T):cut cap(S)

Example

val(f ) = cap(S) = 4

S

T
s t

2/2

2/4

0/6

2/4

1/1

1/3

0/3

2/5

1/1

Yasushi Kawase Advanced Core in Algorithm Design 15 / 23



Quiz

What is the maximum value of s–t flow?

s t

11

8

14

6

8

9

13

6

5 12

4

16

6

10

5

Yasushi Kawase Advanced Core in Algorithm Design 16 / 23



Outline

1 Max-flow and Min-cut Problems

2 Augmenting path algorithm

3 Capacity-scaling algorithm

Yasushi Kawase Advanced Core in Algorithm Design 17 / 23



Bad example

Ford–Fulkerson is too slow (exponential time w.r.t. input size)

s t

a

b

M

M

1

M

M

• s → a → b→ t

• s → b→ a → t

• s → a → b→ t

• s → b→ a → t

•
...

we’d like to choose “good” augmenting path

Yasushi Kawase Advanced Core in Algorithm Design 18 / 23



Capacity scaling

• Choosing augmenting paths with large bottleneck capacity
• Gf (∆): subgraph of Gf consisting only of edges e with cf (e) ≥ ∆

Scaling algorithm

1 ∆← largest power of 2 that is no larger than maxe: out of s ce;
2 Gf ← residual network of G with respect to flow f ;
3 while ∆ ≥ 1 do
4 while ∃ an s–t path P in Gf (∆) do
5 f ← Augment(f , c,P);
6 Update Gf (∆);
7 ∆← ∆/2;

Yasushi Kawase Advanced Core in Algorithm Design 19 / 23



Example

s t

0/5

0/3

0/1

0/4

0/2

s t

5

3

1

4

2

∆ = 4, δ = 4

s t

4/5

0/3

0/1

4/4

0/2

s t1
4

3
1

4

2

∆ = 4

s t

4/5

0/3

0/1

4/4

0/2

s t1
4

3
1

4

2

∆ = 2, δ = 2

Yasushi Kawase Advanced Core in Algorithm Design 20 / 23



Analyzing the algorithm
Lemma
The number of scaling phases is 1 + blog2 C

maxe: out of s ce

c
∵ ∆ = 2blog2 Cc, 2blog2 Cc−1, . . . , 20

Lemma
At the end of a ∆-scaling phase, cap(S

the set of vertices reachable from s in Gf (∆)

) ≤ val(f ) + m∆

see next slide

Lemma
The number of augmentations in each scaling phase is at most 2m
• at the beginning of ∆-scaling phase, max-flow≤ val(f ) + m(2∆)
• each augmentation increases val(f ) by at least ∆

Theorem
The scaling algorithm can be implemented to run in O(m2 logC) time

weakly polynomial time

finding an augmenting path takes O(m) time

Yasushi Kawase Advanced Core in Algorithm Design 21 / 23



Proof of the lemma

Lemma
At the end of a ∆-scaling phase, cap(S

the set of vertices reachable from s in Gf (∆)

) ≤ val(f ) + m∆

Proof

val(f ) =
∑

e: out of S

fe −
∑

e: into S

fe

≥
∑

e: out of S

(ce −∆)−
∑

e: into S

∆

≥ cap(S)−m∆

s

fe < ∆

fe > ce −∆

G

S

Yasushi Kawase Advanced Core in Algorithm Design 22 / 23



Summary

• Ford–Fulkerson algorithm O(mC) time (pseudo polynomial-time)

• Scaling algorithm O(m2 logC) time (weak polynomial-time)

Next week
• Edmonds–Karp algorithm O(m2n) time (strong polynomial-time)

State of the Art
• O(mn) time [Orlin 2013]

• m1+o(1) logC time [Chen et al., 2022]

Yasushi Kawase Advanced Core in Algorithm Design 23 / 23


	Max-flow and Min-cut Problems
	Augmenting path algorithm
	Capacity-scaling algorithm

