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Schedule

Lec. # Date Topics
1 10/4 Introduction, Stable matching
2 10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)
3 10/18 Greedy Algorithms (2/2)
4 10/25 Divide and Conquer (1/2)
5 11/1 Divide and Conquer (2/2)
6 11/8 Dynamic Programming (1/2)
7 11/15 Dynamic Programming (2/2)

— 11/22 Thursday Classes
8 11/29 Network Flow (1/2)
9 12/6 Network Flow (2/2)

10 12/13 NP and Computational Intractability
11 12/20 Approximation Algorithms (1/2)
12 12/27 Approximation Algorithms (2/2)
13 1/10 Randomized Algorithms
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Outline

1 Max-flow and Min-cut Problems

2 Augmenting path algorithm

3 Capacity-scaling algorithm
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Flow Network
Flow network (G, s, t, c)
• directed graph G = (V ,E) with source s ∈ V and sink t ∈ V

• capacity ce for each e ∈ E

s–t flow f
Capacity constraint 0 ≤ fe ≤ ce for all e ∈ E
Conservation of flows

∑
u: e=(u,v)∈E fe =

∑
u: (v,u)∈E fe (∀v ∈ V \ {s, t})

Example

s t

ce = 5
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Flow Network
Flow network (G, s, t, c)
• directed graph G = (V ,E) with source s ∈ V and sink t ∈ V

• capacity ce for each e ∈ E

s–t flow f
Capacity constraint 0 ≤ fe ≤ ce for all e ∈ E
Conservation of flows

∑
u: e=(u,v)∈E fe =

∑
u: (v,u)∈E fe (∀v ∈ V \ {s, t})

Example

s t
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0/2

5/6

0/4
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1/3

1/1

4/9
s–t flow

Yasushi Kawase Advanced Core in Algorithm Design 4 / 23



Max-flow problem

Problem
• Input: flow network (G, s, t, c)

• Goal: find an s–t flow of maximum value val(f )

∑
v: e=(s,v)∈E fe −

∑
v: e=(v,s)∈E fe

Example

s t

c(e) = 5
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Max-flow problem

Problem
• Input: flow network (G, s, t, c)

• Goal: find an s–t flow of maximum value val(f )

∑
v: e=(s,v)∈E fe −

∑
v: e=(v,s)∈E fe

Example

s t

5/5

2/2

3/6

2/4

2/2

3/3

3/3

1/1

6/9val(f ) = 7
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Min-cut Problem
s–t cut
a partition (S ,T) of the vertices with s ∈ S and t ∈ T

Problem
• Input: flow network (G, s, t, c)

• Goal: find an s–t cut of minimum capacity cap(S)

∑
e=(u,v)∈E: u∈S, v 6∈S ce

Example

s t

c(e) = 5
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Min-cut Problem
s–t cut
a partition (S ,T) of the vertices with s ∈ S and t ∈ T

Problem
• Input: flow network (G, s, t, c)

• Goal: find an s–t cut of minimum capacity cap(S)

∑
e=(u,v)∈E: u∈S, v 6∈S ce

Example

cap(S) = 11
S

T
s t

c(e) = 5
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3
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Weak duality

Lemma
val(f ) ≤ cap(S) for any flow f and cut (S ,T)

Proof
val(f ) =

∑
v∈S

[∑
u: e=(v,u)∈E fe

flow out of v

−
∑

u: e=(u,v)∈E fe

flow into v ]
=

∑
e: out of S

fe −
∑

e: into S
fe

≤
∑

e: out of S
fe ≤

∑
e: out of S

ce = c(S)

s t

we will see maxf val(f ) = min(S,T) cap(S)
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Outline

1 Max-flow and Min-cut Problems

2 Augmenting path algorithm

3 Capacity-scaling algorithm
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Residual network

Residual network (Gf , s, t, cf ) of G w.r.t. f
residual graph Gf = (V ,Ef ), Ef = {e | e ∈ E , fe < ce} ∪ { ē

reverse edge of e

| e ∈ E , fe > 0}

residual capacity cf (e) =

{
ce − fe if e ∈ E
fe if ē ∈ E

s t

3/4

0/1

2/2

1/3

2/2

original network and flow

s t

1

3

1

2

2

1

2

residual network
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Augmenting path

• augmenting path: a simple s–t path in the residual network Gf

• bottleneck capacity: the minimum residual capacity of a path

s t

3/4

0/1

2/2

1/3

2/2

original network and flow

bottleneck capacity = 1

s t

1
3

1

2

2
1

2

residual network and
augmenting path

s t

3/4

1/1

1/2

2/3

2/2

new flow
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Ford–Fulkerson algorithm

Augment(f , c,P)

1 δ ←bottleneck capacity of augmenting path P;
2 foreach e ∈ P do
3 if e ∈ E then fe ← fe + δ;
4 else fē ← fē − δ;
5 Return f ;

Output of Augment(f , c,P) is a flow

Ford–Fulkerson algorithm

1 fe ← 0 for each e ∈ E ;
2 Gf ← residual network of G with respect to flow f ;
3 while ∃ an s–t path P in Gf do
4 f ← Augment(f , c,P);
5 Update Gf ;
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Example

s t

0/2

0/1

0/3

0/4

0/2

s t

2

1

3

4

2

δ = 2

s t

2/2

0/1

2/3

0/4

2/2

s t

2

1

12

4

2

δ = 1

s t

2/2

1/1

1/3

1/4

2/2

s t

2

1
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3
1

2

Yasushi Kawase Advanced Core in Algorithm Design 12 / 23



Termination and Running time

Suppose that ce ∈ Z++ (∀e ∈ E)

Observation
∀ iterations, the flow value fe and the residual capacity of Gf are integral

Observation
∀ iterations, val(f ) increases at least 1

Theorem
• Ford–Fulkerson algorithm terminates in at most C :=

∑
e∈E ce steps

• Ford–Fulkerson algorithm can be implemented to run in O(mC) time

s–t path can be found in O(m) time by BFS or DFS
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Correctness
Theorem
Ford–Fulkerson algorithm outputs a max-flow

Proof
• When it terminates, 6 ∃ s–t path in Gf

• Let S be the set of vertices reachable from s in Gf (s ∈ S and t 6∈ S)

• val(f ) =
∑

e: out of S fe −
∑

e: into S fe =
∑

e: out of S ce = cap(S)

• By the weak duality
val(f ′) ≤ cap(A)

, f is a max-flow and (S ,V \ S) is a min-cut

s

Gf

S

s

0

0

ce

ce′

G

S
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Max-flow Min-cut theorem

Theorem
maxf : flow val(f ) = min(S,T):cut cap(S)

Example

val(f ) = cap(S) = 4

S

T
s t

2/2

2/4

0/6

2/4

1/1

1/3

0/3

2/5

1/1
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Quiz

What is the maximum value of s–t flow?

s t
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Outline

1 Max-flow and Min-cut Problems

2 Augmenting path algorithm

3 Capacity-scaling algorithm
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Bad example

Ford–Fulkerson is too slow (exponential time w.r.t. input size)

s t

a

b

M

M

1

M

M

• s → a → b→ t

• s → b→ a → t

• s → a → b→ t

• s → b→ a → t

•
...

we’d like to choose “good” augmenting path
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Capacity scaling

• Choosing augmenting paths with large bottleneck capacity
• Gf (∆): subgraph of Gf consisting only of edges e with cf (e) ≥ ∆

Scaling algorithm

1 ∆← largest power of 2 that is no larger than maxe: out of s ce;
2 Gf ← residual network of G with respect to flow f ;
3 while ∆ ≥ 1 do
4 while ∃ an s–t path P in Gf (∆) do
5 f ← Augment(f , c,P);
6 Update Gf (∆);
7 ∆← ∆/2;
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Example

s t

0/5

0/3

0/1

0/4

0/2

s t

5

3

1

4

2

∆ = 4, δ = 4

s t

4/5

0/3

0/1

4/4

0/2

s t1
4

3
1

4

2

∆ = 4

s t

4/5

0/3

0/1

4/4

0/2

s t1
4

3
1

4

2

∆ = 2, δ = 2
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Analyzing the algorithm
Lemma
The number of scaling phases is 1 + blog2 C

maxe: out of s ce

c
∵ ∆ = 2blog2 Cc, 2blog2 Cc−1, . . . , 20

Lemma
At the end of a ∆-scaling phase, cap(S

the set of vertices reachable from s in Gf (∆)

) ≤ val(f ) + m∆

see next slide

Lemma
The number of augmentations in each scaling phase is at most 2m
• at the beginning of ∆-scaling phase, max-flow≤ val(f ) + m(2∆)
• each augmentation increases val(f ) by at least ∆

Theorem
The scaling algorithm can be implemented to run in O(m2 logC) time

weakly polynomial time

finding an augmenting path takes O(m) time
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Proof of the lemma

Lemma
At the end of a ∆-scaling phase, cap(S

the set of vertices reachable from s in Gf (∆)

) ≤ val(f ) + m∆

Proof

val(f ) =
∑

e: out of S

fe −
∑

e: into S

fe

≥
∑

e: out of S

(ce −∆)−
∑

e: into S

∆

≥ cap(S)−m∆

s

fe < ∆

fe > ce −∆

G

S
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Summary

• Ford–Fulkerson algorithm O(mC) time (pseudo polynomial-time)

• Scaling algorithm O(m2 logC) time (weak polynomial-time)

Next week
• Edmonds–Karp algorithm O(m2n) time (strong polynomial-time)

State of the Art
• O(mn) time [Orlin 2013]

• m1+o(1) logC time [Chen et al., 2022]
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