Yasushi Kawase

Advanced Core in Algorithm Design #8
BEFTER £ 8

Yasushi Kawase

Nov. 29th, 2022
last update: 3:27pm, November 29, 2022

Advanced Core in Algorithm Design

Schedule

Lec. #

Date

Topics

~NOo ok~ WwWwN

10
11
12
13

10/4
10/11
10/18
10/25
11/1
11/8
11/15
11/22
11/29
12/6
12/13
12/20
12/27
1/10

Introduction, Stable matching
Basics of Algorithm Analysis, Greedy Algorithms (1/2)
Greedy Algorithms (2/2)

Divide and Conquer (1/2)

Divide and Conquer (2/2)

Dynamic Programming (1/2)
Dynamic Programming (2/2)
Thursday Classes

Network Flow (1/2)

Network Flow (2/2)

NP and Computational Intractability
Approximation Algorithms (1/2)
Approximation Algorithms (2/2)
Randomized Algorithms

Yasushi Kawase

Advanced Core in Algorithm Design 2/23

Outline

o Max-flow and Min-cut Problems

Yasushi Kawase Advanced Core in Algorithm Design

Flow Network

Flow network (G, s, t, ¢)
e directed graph G = (V, E) with source s € V and sink t € V

e capacity c. for each e € £

s—t flow f
Capacity constraint 0 < f, < ¢, for all e€ E
Conservation of flows >, ._(, yerfe = 2w (wuerfe (Vv € V\{s, t})

Example

Yasushi Kawase Advanced Core in Algorithm Design

Flow Network
Flow network (G, s, t,)
e directed graph G = (V, E) with source s € V and sink t € V

e capacity c, for each e €

s—t flow f
Capacity constraint 0 < f, < c. forall ee E
Conservation of flows 3~ ., yepfe = 2w (wuerfe (Vv € V\{s t})

Example

s—t flow

Yasushi Kawase Advanced Core in Algorithm Design

Max-flow problem

Problem

e Input: flow network (G, s, t, c) [Z em(s)eBfe = L em(uier e

e Goal: find an s—t flow of maximum value val(f)

Example

Yasushi Kawase Advanced Core in Algorithm Design

Max-flow problem

Problem

e Input: flow network (G, s, t, c) {Z em(syerde = v em(usyer fe

e Goal: find an s—t flow of maximum value val(f)

Example

val(f) =7

Yasushi Kawase Advanced Core in Algorithm Design

Min-cut Problem

s—t cut
a partition (S, T') of the vertices with s€ Sand t € T

Problem
e Input: flow network (G, s, t, c)

Zc:(u.'ﬂ)EE: ues, vgs Ce

e Goal: find an s—t cut of minimum capacity cap(5)

Example

Yasushi Kawase Advanced Core in Algorithm Design

Min-cut Problem
s—t cut

a partition (S, T') of the vertices with s € S and t € T

Problem
e Input: flow network (G, s, t, c)

Zc:(u.'{/)EE: ues, vgS Ce

e Goal: find an s—t cut of minimum capacity cap(S)

Example

Yasushi Kawase Advanced Core in Algorithm Design

Weak duality

Lemma
val(f) < cap(S) for any flow f and cut (S, T)

Proof
Val(f) = Z [Zu e:(v,u)EEfe - Zu: e:(u,v)EEfe:|

veS

= D> L= Dk
e: out of S e: into S

< Z fe < Z Ce = C(S)
e: out of S e: out of S

o7 T\ ©

Yasushi Kawase Advanced Core in Algorithm Design

Weak duality

Lemma
val(f) < cap(S) for any flow f and cut (S, T)

Proof
Val(f) = Z [Zu e:(v,u)EEfe - Zu: e:(u,v)EEfe:|

veS

= D> L= Dk
e: out of S e: into S

< Z fe < Z Ce = C(S)
e: out of S e: out of S

o7 T\ ©

we will see max; val(f) = min(g, 1) cap(.5)

Yasushi Kawase Advanced Core in Algorithm Design

Outline

© Augmenting path algorithm

Yasushi Kawase Advanced Core in Algorithm Design

Residual network

Residual network (Gy, s, t, ¢f) of G w.r.t. f

reverse edge of e
residual graph Gy = (V,Ef), E;={e|e€E, fo<c.}U{e|ecE, f.>0}
Ce—fe ife€eF

residual capacity cf(e) = {f coc
A It e e

original network and flow

Yasushi Kawase Advanced Core in Algorithm Design

Augmenting path

e augmenting path: a simple s—t path in the residual network Gy

e bottleneck capacity: the minimum residual capacity of a path

bottleneck capacity = 1

original network and flow residual network and new flow
augmenting path

Yasushi Kawase Advanced Core in Algorithm Design 10 / 23

Ford—Fulkerson algorithm

Augment(f, ¢, P)

1
2
3
4

5

0 <bottleneck capacity of augmenting path P;
foreach ¢ € P do

if ee E then f, < f. + 6;
else f; «+ fz — 0;
Return f;

Output of Augment(f, ¢, P) is a flow

Ford—Fulkerson algorithm

G W=

fe < 0 for each e € F;
Gy < residual network of G with respect to flow f;
while 3 an s—t path P in Gy do
f < Augment(f, ¢, P);
L Update GY;

Yasushi Kawase Advanced Core in Algorithm Design

11 /23

Example

anced Core in Algorithm Design

Termination and Running time

Suppose that ¢, € Zy (Ve € E)
Observation

V iterations, the flow value f. and the residual capacity of G are integral

Observation
V iterations, val(f) increases at least 1

Theorem
e Ford—Fulkerson algorithm terminates in at most C' :=) _p c. steps

o Ford—Fulkerson algorithm can be implemented to run in O(mC') time

s—t path can be found in O(m) time by BFS or DFS

Yasushi Kawase Advanced Core in Algorithm Design 13 /23

Correctness

Theorem

Ford—Fulkerson algorithm outputs a max-flow

Proof
e When it terminates, A s—t path in Gy

e Let S be the set of vertices reachable from s in Gy (s Sandt¢5)

° Val(f) = Ze: out of Sfe - Ze: into Sfe = Ze: out of § Ce = Cap(S)

e By the weak duality, f is a max-flow and (S, V'\ §) is a min-cut

Gf - G .40/0.
ec—* e—*

Yasushi Kawase Advanced Core in Algorithm Design 14 / 23

Max-flow Min-cut theorem

Theorem
maxfg: flow Val(f) = rnin(S,T):cut Cap(S)

Example

Advanced Core in Algorithm Design

Yasushi Kawase

Quiz

What is the maximum value of s—t flow?

Yasushi Kawase Advanced Core in Algorithm Design

16 / 23

Outline

© Capacity-scaling algorithm

Yasushi Kawase Advanced Core in Algorithm Design 17 / 23

Bad example

Ford—Fulkerson is too slow (exponential time w.r.t. input size)

s—>a—>b—t

s—>b—a—t

s—a—>b—t

s—>b—a—t

we'd like to choose “good” augmenting path

Yasushi Kawase Advanced Core in Algorithm Design

Capacity scaling

e Choosing augmenting paths with large bottleneck capacity
e Gy(A): subgraph of G} consisting only of edges e with c¢(e) > A

Scaling algorithm

1 A « largest power of 2 that is no larger than max.. out of s Ce;
2 Gy < residual network of G with respect to flow f;

3 while A > 1 do

4 while 3 an s—t path P in Gy(A) do

5 f < Augment(f, c, P);
6 Update G¢(A);
7 A+ A/2;

Yasushi Kawase Advanced Core in Algorithm Design

Example

0/5

Analyzing the algorithm

Lemma

The number of scaling phases is 1 + [logy C']

-+ A = 2llogz O] gllogy C]—-1 90

Lemma {the set of vertices reachable from s in G,«(A)}

At the end of a A-scaling phase, cap(S) < val(f) + mA

see next slide

Lemma
The number of augmentations in each scaling phase is at most 2m

® at the beginning of A-scaling phase, max-flow< val(f) + m(2A)
® cach augmentation increases val(f) by at least A

Theorem [weakly polynomial timeJ

The scaling algorithm can be implemented to run in O(m?log C) time
finding an augmenting path takes O(m) time

Yasushi Kawase Advanced Core in Algorithm Design

21 /23

Proof of the lemma

Lemma [the set of vertices reachable from s in G;(A)}

At the end of a A-scaling phase, cap(S) < val(f) + mA

Proof
val(f) = fe— fe fo< A
e: c%f S e: % S G .4/.
> Z (e —A) — Z A @ <"
e: out of S e: into S — 5o
> cap(S) — mA S —
fe>ce— A

Yasushi Kawase Advanced Core in Algorithm Design

22 /23

Summary

e Ford—Fulkerson algorithm =¥ O(mC) time (pseudo polynomial-time)

e Scaling algorithm = O(m?log C) time (weak polynomial-time)

Next week

o Edmonds—Karp algorithm = O(m?n) time (strong polynomial-time)

State of the Art
e O(mn) time [Orlin 2013]

e m!T°W log C' time [Chen et al., 2022]

Yasushi Kawase Advanced Core in Algorithm Design 23 /23

	Max-flow and Min-cut Problems
	Augmenting path algorithm
	Capacity-scaling algorithm

