
Advanced Core in Algorithm Design #7
算法設計要論 第 7回

Yasushi Kawase
河瀬 康志

Nov. 15th, 2022
last update: 12:17pm, November 15, 2022

Yasushi Kawase Advanced Core in Algorithm Design 1 / 27

Schedule

Lec. # Date Topics
1 10/4 Introduction, Stable matching
2 10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)
3 10/18 Greedy Algorithms (2/2)
4 10/25 Divide and Conquer (1/2)
5 11/1 Divide and Conquer (2/2)
6 11/8 Dynamic Programming (1/2)
7 11/15 Dynamic Programming (2/2)

— 11/22 Thursday Classes
8 11/29 Network Flow (1/2)
9 12/6 Network Flow (2/2)

10 12/13 NP and Computational Intractability
11 12/20 Approximation Algorithms (1/2)
12 12/27 Approximation Algorithms (2/2)
13 1/10 Randomized Algorithms

Yasushi Kawase Advanced Core in Algorithm Design 2 / 27

Outline

1 Shortest path problem (nonnegative lengths)

2 Shortest path problem with negative lengths

3 All-pairs shortest paths

4 Traveling Salesman Problem

Yasushi Kawase Advanced Core in Algorithm Design 3 / 27

Shortest path problem

Problem
• Input: Directed graph G = (V ,E), source s ∈ V , length `e ≥ 0 (e ∈ E)

• Goal: Compute shortest distance and path from s to each t ∈ V \ {s}

Example

1
2

3

4
5

s = 1

`(1,4) = 6

2

7

8
4

3

7

0
7

2

5
11

Yasushi Kawase Advanced Core in Algorithm Design 4 / 27

Shortest path problem

Problem
• Input: Directed graph G = (V ,E), source s ∈ V , length `e ≥ 0 (e ∈ E)

• Goal: Compute shortest distance and path from s to each t ∈ V \ {s}

Example

1
2

3

4
5

s = 1

`(1,4) = 6

2

7

8
4

3

7

0
7

2

5
11

Yasushi Kawase Advanced Core in Algorithm Design 4 / 27

Dijkstra algorithm

Approach
• Initialize S ← {s}, dist(s)← 0

• Repeatedly choose unexplored node v 6∈ S which minimizes

min
e=(u,v): u∈S

dist(u) + `e,

set dist(v) to be the above value, and S ← S ∪ {v}

s

S

`e
dist(u)

Yasushi Kawase Advanced Core in Algorithm Design 5 / 27

Behavior of Dijkstra algorithm

S

s = 1

1
2

3

4
5

dist(1) = 0

2

5

7

11
6

2

7

8
4

3

7

Yasushi Kawase Advanced Core in Algorithm Design 6 / 27

Behavior of Dijkstra algorithm

S

s = 1

1
2

3

4
5

dist(1) = 0

2

5

7

11
6

2

7

8
4

3

7

Yasushi Kawase Advanced Core in Algorithm Design 6 / 27

Behavior of Dijkstra algorithm

S

s = 1

1
2

3

4
5

dist(1) = 0

2

5

7

11
6

2

7

8
4

3

7

Yasushi Kawase Advanced Core in Algorithm Design 6 / 27

Behavior of Dijkstra algorithm

S

s = 1

1
2

3

4
5

dist(1) = 0

2

5

7

11
6

2

7

8
4

3

7

Yasushi Kawase Advanced Core in Algorithm Design 6 / 27

Behavior of Dijkstra algorithm

S

s = 1

1
2

3

4
5

dist(1) = 0

2

5

7

11
6

2

7

8
4

3

7

Yasushi Kawase Advanced Core in Algorithm Design 6 / 27

Correctness of Dijkstra algorithm

Induction
• Base case S = {s} is clear (dist(s) = 0)

• Inductive step: `(P
shortest s–v path

) ≥ dist(x) + `(x, y)

first edge in P that leaves S

≥ dist(u) + `(u,v)

S

s

x y

u
v

Yasushi Kawase Advanced Core in Algorithm Design 7 / 27

Efficient implementation
Dijkstra algorithm

1 dist(s)← 0, dist(v)←∞ (∀v 6= s);
2 Create an empty priority queue H ;
3 foreach v ∈ V do insert(H , v,dist(v));
4 while H is not empty do
5 u ← deletemin(H);
6 foreach e = (u, v) ∈ E do
7 if dist(v) > dist(u) + `(u,v) then
8 dist(v)← dist(u) + `(u,v);
9 decreasekey(H , v,dist(v));

10 Return dist;

• insert: n times
• deletemin: n times
• decreasekey: O(m) times

Yasushi Kawase Advanced Core in Algorithm Design 8 / 27

Running time

The running time depends on implementation of priority queue

Implementation insert deletemin decreasekey Total time

array O(1) O(n) O(1) O(n2)

binary heap O(log n) O(log n) O(log n) O(m log n)

d-ary heap O(d logd n) O(d logd n) O(logd n) O((nd + m) logd n)

Fibonacci heap O(1) (amortized) O(log n) O(1) (amortized) O(m + n log n)

n times n times O(m) times

• dense graph (m = Ω(n2)) array implementation is the faster
• sparse graph (m = O(n)) Fibonacci heap implementation is the faster

Yasushi Kawase Advanced Core in Algorithm Design 9 / 27

Quiz

Compute the shortest distance from s to t

s t

18

8

9

3

4

12

13

21

5 13

12

11

6

4

5

Yasushi Kawase Advanced Core in Algorithm Design 10 / 27

Outline

1 Shortest path problem (nonnegative lengths)

2 Shortest path problem with negative lengths

3 All-pairs shortest paths

4 Traveling Salesman Problem

Yasushi Kawase Advanced Core in Algorithm Design 11 / 27

Shortest path problem

Problem
• Input: Directed graph G = (V ,E), source s ∈ V , length `e (e ∈ E)

• Goal: Compute shortest distance and path from s to each t ∈ V \ {s}

Example

1
2

3

4
5

s = 1

`(1,4) = 4

5

7

8
−4

−2

7

0
7

5

3
3

Yasushi Kawase Advanced Core in Algorithm Design 12 / 27

Shortest path problem

Problem
• Input: Directed graph G = (V ,E), source s ∈ V , length `e (e ∈ E)

• Goal: Compute shortest distance and path from s to each t ∈ V \ {s}

Example

1
2

3

4
5

s = 1

`(1,4) = 4

5

7

8
−4

−2

7

0
7

5

3
3

Yasushi Kawase Advanced Core in Algorithm Design 12 / 27

Dijkstra algorithm may fail

s
5

4 −2

s 2 1
1

1

−1

2

1

−2

if there exists a negative cycle, then there may not exist a shortest path

Yasushi Kawase Advanced Core in Algorithm Design 13 / 27

No negative cycle case
Observation
If no negative cycles exists, there is a shortest s–t path that is simple

• Let P be the shortest s–t path that uses the fewest edges
• If P contains a directed cycle (whose length is nonnegative),

it can be removed without increasing the length of P

s v t

P

there exists a shortest s–t path that has at most n − 1 edges

Yasushi Kawase Advanced Core in Algorithm Design 14 / 27

Dynamic programming (Bellman–Ford algorithm)
OPT(i, v): length of shortest s–v path that uses at most i edges

Recursive formula

OPT(i, v) =


0 if i = 0 and v = s
∞ if i = 0 and v 6= s

min

{
OPT(i − 1, v)

min(u,v)∈E OPT(i − 1, u) + `(u,v)

}
if i > 0

Bellman–Ford

1 dist(s)← 0, dist(v)←∞ (∀v 6= s);
2 for i ← 1, 2, . . . ,n − 1 do
3 foreach e = (u, v) ∈ E do
4 dist(v)← min{dist(v), dist(u) + `(u,v)};

O(mn) subproblems, each one takse O(1) time O(mn) time

Yasushi Kawase Advanced Core in Algorithm Design 15 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Behavior of Bellman–Ford

s = 1

10

2 ∞211

3 ∞3

4 ∞32

2

3

1

−2

4

Yasushi Kawase Advanced Core in Algorithm Design 16 / 27

Detecting a negative cycle

Proposition
∃ s–t path that contains a negative cycle ⇒ limi→∞ OPT(i, t) = −∞

Proposition
6 ∃ s–t path that contains a negative cycle for any t ∈ V
⇐⇒ OPT(n, v) = OPT(n − 1, v) for any v ∈ V

• (⇒) because ∃ shortest s–v path that has at most n − 1 edges
• (⇐) because OPT(n, v) = OPT(n − 1, v) (∀v ∈ V) implies
limi→∞ OPT(i, v) = OPT(n − 1, v) > −∞

a negative cycle can be found in O(mn) time

Yasushi Kawase Advanced Core in Algorithm Design 17 / 27

Outline

1 Shortest path problem (nonnegative lengths)

2 Shortest path problem with negative lengths

3 All-pairs shortest paths

4 Traveling Salesman Problem

Yasushi Kawase Advanced Core in Algorithm Design 18 / 27

All-pairs shortest paths problem

Problem
• Input: Directed graph G = (V ,E) and length `e (e ∈ E)

• Goal: Compute shortest distance for every pair (s, t) ∈ V 2

• Running Dijkstra alg.
applicable only when `e ≥ 0 (∀e ∈ E)

for every s ∈ V O(mn + n2 log n) time

• Running Bellman–Ford alg. for every s ∈ V O(mn2) time

• Better alternative: Floyed–Warshall alg. O(n3) time

Yasushi Kawase Advanced Core in Algorithm Design 19 / 27

Dynamic programming (Floyd–Warshall algorithm)

• V = {1, 2, . . . ,n}

• OPT(i, j, k): shortest i–j dist. only using vertices in {1, 2, . . . , k}

Recursive formula

OPT(i, j, k) =



min

{
OPT(i, j, k − 1)

OPT(i, k, k − 1) + OPT(k, j, k − 1)

}
if k > 0

0 if k = 0 and i = j
`(i,j) if k = 0 and (i, j) ∈ E
∞ otherwise

O(n3) subproblems, each one takes O(1) time O(n3) time

i

k

j
OPT(i, j, k − 1)

OPT(i, k, k − 1) OPT(k, j, k − 1)

Yasushi Kawase Advanced Core in Algorithm Design 20 / 27

Implementation of Floyd–Warshall algorithm

Floyd–Warshall algorithm

1 for i ← 1, 2, . . . ,n do
2 for i ← 1, 2, . . . ,n do
3 if i = j then dist(i, j)← 0;
4 else if (i, j) ∈ E then dist(i, j)← `(i,j);
5 else dist(i, j)←∞;

6 for k ← 1, 2, . . . ,n do
7 for i ← 1, 2, . . . ,n do
8 for j ← 1, 2, . . . ,n do
9 dist(i, j)← min{dist(i, j), dist(i, k) + dist(k, j)};

Yasushi Kawase Advanced Core in Algorithm Design 21 / 27

Detecting a negative cycle

Proposition
∃ negative cycle including i ∈ V ⇒ OPT(i, i,n) < 0

i

kOPT(i, k, k − 1)

OPT(k, i, k − 1)

a negative cycle can be found in O(n3) time

Yasushi Kawase Advanced Core in Algorithm Design 22 / 27

Another approach: reweighting edges

Dijkstra algorithm is applicable by reweighting edges

• reweight the edges by potential π : V → R

`′(u,v) := `(u,v) + π(u)− π(v) (≥ 0)

• compute reweighted shortest distances

k∑
i=1

`′(vi ,vi+1)
=

k∑
i=1

`(vi ,vi+1) + π(v1)− π(vk+1)

constant

Yasushi Kawase Advanced Core in Algorithm Design 23 / 27

Johnson’s algorithm

1 add a new node s and add a new edge (s, v) with `(s,v) = 0 (∀v ∈ V);
2 compute dist(s, v) for all v ∈ V by Bellman–Ford alg.;
3 reweight the edges as `′(u,v) := `(u,v) + dist(s, u)− dist(s, v);
4 compute reweighted shortest distances dist′(u, v) by Dijkstra alg.;
5 compute original shortest distances

dist(u, v) = dist′(u, v)− dist(s, u) + dist(s, v);

O(mn + n2 log n) time

a

b c

4

−1

3

−2

Yasushi Kawase Advanced Core in Algorithm Design 24 / 27

Outline

1 Shortest path problem (nonnegative lengths)

2 Shortest path problem with negative lengths

3 All-pairs shortest paths

4 Traveling Salesman Problem

Yasushi Kawase Advanced Core in Algorithm Design 25 / 27

Traveling Salesman Problem
Problem
• Input: set of vertices V with distance d :

(V
2
)
→ R+

• Goal: find a shortest cycle that visits all vertices exactly once

naive algorithm: Θ(n!) time ((n − 1)! possibilities)

improve it to O(n22n)

Example

3

1

3

4
2

4

Yasushi Kawase Advanced Core in Algorithm Design 26 / 27

Traveling Salesman Problem
Problem
• Input: set of vertices V with distance d :

(V
2
)
→ R+

• Goal: find a shortest cycle that visits all vertices exactly once

naive algorithm: Θ(n!) time ((n − 1)! possibilities)

improve it to O(n22n)

Example

3

1

3

4
2

4 length = 11

Yasushi Kawase Advanced Core in Algorithm Design 26 / 27

Dynamic programming (Held–Karp algorithm)

• V = {1, 2, . . . ,n}

• OPT(S , j): length of the shortest 1–j path through every vertices in S
S ⊆ V \ {1}, j ∈ V \ S. optimal value of the original problem is OPT(V \ {1}, 1)

Recursive formula

OPT(S , j) =

{
mini∈S OPT(S \ {i}, i) + d(i, j) if |S | > 0
d(i, j) if |S | = 0

O(n2n) subproblems, each one takes O(n) time O(n22n) time

1
i

j

S

Yasushi Kawase Advanced Core in Algorithm Design 27 / 27

	Shortest path problem (nonnegative lengths)
	Shortest path problem with negative lengths
	All-pairs shortest paths
	Traveling Salesman Problem

