
Advanced Core in Algorithm Design #4
算法設計要論 第 4回

Yasushi Kawase
河瀬 康志

Oct. 25th, 2022
last update: 9:37am, October 30, 2022

Yasushi Kawase Advanced Core in Algorithm Design 1 / 24

Schedule

Lec. # Date Topics
1 10/4 Introduction, Stable matching
2 10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)
3 10/18 Greedy Algorithms (2/2)
4 10/25 Divide and Conquer (1/2)
5 11/1 Divide and Conquer (2/2)
6 11/8 Dynamic Programming (1/2)
7 11/15 Dynamic Programming (2/2)

— 11/22 Thursday Classes
8 11/29 Network Flow (1/2)
9 12/6 Network Flow (2/2)

10 12/13 NP and Computational Intractability
11 12/20 Approximation Algorithms (1/2)
12 12/27 Approximation Algorithms (2/2)
13 1/10 Randomized Algorithms

Yasushi Kawase Advanced Core in Algorithm Design 2 / 24

Outline

1 Basics of Divide-and-Conquer

2 Sorting

3 Matrix multiplication

4 Closest Pair of Points

Yasushi Kawase Advanced Core in Algorithm Design 3 / 24

Divide-and-Conquer

• Divide up problem into several subproblems
divide problem of size n into a subproblems of size n/b

• Solve each subproblems recursively

• Combine solutions to subproblems into overall solution
combine in f (n) time

• Total computational time for a problem of size n satisfies

T(n) = aT(n/b) + f (n)

• T(n) = O(1) when n is less than some bound

Yasushi Kawase Advanced Core in Algorithm Design 4 / 24

Typical Example

T(n) = 2 · T(n/2) + O(n) T(n) = O(n log n)

n

n
2

n
22

...

n
2k

n
2k

...

n
22

...
...

n
2

n
22

...
...

n
22

...
...

n
2k

n
2k = O(n)

...

O(n)

O(n)

O(n)

O(n · log n)

+

+ ++

+ +· · ·

+

+

+

=

+

=

=

=

+ +

· · ·

Yasushi Kawase Advanced Core in Algorithm Design 5 / 24

Reccurence relations

Recurrence relations Computational time

T(n) = T(n/2) + O(1) T(n) = O(log n)

T(n) = 2 · T(n/2) + O(1) T(n) = O(n)

T(n) = 2 · T(n/2) + O(n) T(n) = O(n log n)

T(n) = 3 · T(n/2) + O(n) T(n) = O(nlog2 3)

T(n) = aT(n/b) + O(nd) T(n) =


O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlogb a) if d < logb a

a > 0, b > 1, d ≥ 0

Yasushi Kawase Advanced Core in Algorithm Design 6 / 24

Proof sketch

T(n) = a · T(n/b) + O(nd) T(n) =


O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlogb a) if d < logb a

n

n
b

n
b2

...

n
bk

n
bk

...

n
b2

...
...

n
b

n
b2

...
...

n
b2

...
...

n
bk

n
bk = O((n/bk)d · ak)

...

O((n/b2)d · a2)

O((n/b)d · a)

O(nd)

?

+ · · · +

+ · · ·+ + · · ·++ · · ·+

+ +· · ·

+

+

+

=

+

=

=

=

+ +

· · ·

Yasushi Kawase Advanced Core in Algorithm Design 7 / 24

Quiz

Which is the most appropriate computational time for the following?

T(n) = 4 · T(n/2) + O(n)

1. T(n) = O(n1/2)

2. T(n) = O(n)

3. T(n) = O(n log n)

4. T(n) = O(n2)

5. T(n) = O(2n)

Yasushi Kawase Advanced Core in Algorithm Design 8 / 24

Outline

1 Basics of Divide-and-Conquer

2 Sorting

3 Matrix multiplication

4 Closest Pair of Points

Yasushi Kawase Advanced Core in Algorithm Design 9 / 24

Sorting problem

Problem
• Input: a list L of n elements from a totally ordered universe
• Goal: rearrange them in ascending order

Examples
• [2, 3, 1] [1, 2, 3]

• [4, 2, 8, 5, 7] [2, 4, 5, 7, 8]

• [”s”,”o”,”r”,”t”] [”o”,”r”,”s”,”t”]

Yasushi Kawase Advanced Core in Algorithm Design 10 / 24

Merge sort

MergeSort(L)

1 if |L| ≤ 1 then Return L;
2 Divide L into equal-sized sublists A and B;
3 A← MergeSort(A);
4 B ← MergeSort(B);
5 L← Merge(A,B);
6 Return L;

• Merge(A,B) can be computed in O(|A|+ |B|) times
Merge([3, 7, 12, 18], [2, 11, 15, 23]) → [2, 3, 7, 11, 12, 15, 18, 23]

• the total computational time is T(n) = 2T(n/2) + O(n)
T(n) = O(n log n)

Yasushi Kawase Advanced Core in Algorithm Design 11 / 24

Merge sort

MergeSort(L)

1 if |L| ≤ 1 then Return L;
2 Divide L into equal-sized sublists A and B;
3 A← MergeSort(A);
4 B ← MergeSort(B);
5 L← Merge(A,B);
6 Return L;

• Merge(A,B) can be computed in O(|A|+ |B|) times
Merge([3, 7, 12, 18], [2, 11, 15, 23]) → [2, 3, 7, 11, 12, 15, 18, 23]

• the total computational time is T(n) = 2T(n/2) + O(n)
T(n) = O(n log n)

Yasushi Kawase Advanced Core in Algorithm Design 12 / 24

Lower bound of comparisons

Theorem
Comparison sorting requires Ω(n log n) comparisons

• there are n! possible orderings

• if an algorithm always completes after at most k comparisons,
it cannot distinguish more than 2k cases

2k ≥ n! =⇒ k = Ω(n log n)

Yasushi Kawase Advanced Core in Algorithm Design 13 / 24

Outline

1 Basics of Divide-and-Conquer

2 Sorting

3 Matrix multiplication

4 Closest Pair of Points

Yasushi Kawase Advanced Core in Algorithm Design 14 / 24

Matrix multiplication

Problem
Input Given two n × n matrices A and B
Goal output their product C = AB

naive algorithm: Θ(n3) time (∵ cij =
∑n

k=1 aikbkj)

improve it to O(n2.81)

Example (n = 3)2 3 −1
1 4 3
2 1 5


A

 3 1 2
2 −4 2
−2 3 1


B

=

14 −13 9
5 −6 13
−2 13 11


C

Yasushi Kawase Advanced Core in Algorithm Design 15 / 24

Approach
• partition A and B into n

2 ×
n
2 blocks

A =

(
A11 A12
A21 A22

)
B =

(
B11 B12
B21 B22

)
• the product C is

C =

(
C11 C12
C21 C22

)
=

(
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)

• straightforward application of divide-and-conquer
T(n) = 8T(n/2) + O(n2) T(n) = O(n3) (not improved)

• Can we reduce the number of multiplications?
YES! 8 → 7 is possible

Yasushi Kawase Advanced Core in Algorithm Design 16 / 24

Approach
• partition A and B into n

2 ×
n
2 blocks

A =

(
A11 A12
A21 A22

)
B =

(
B11 B12
B21 B22

)
• the product C is

C =

(
C11 C12
C21 C22

)
=

(
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)

• straightforward application of divide-and-conquer
T(n) = 8T(n/2) + O(n2) T(n) = O(n3) (not improved)

• Can we reduce the number of multiplications?
YES! 8 → 7 is possible

Yasushi Kawase Advanced Core in Algorithm Design 16 / 24

Strassen’s trick

(
C11 C12
C21 C22

)
=

(
A11 A12
A21 A22

)(
B11 B12
B21 B22

)

C11 = P5 + P4 − P2 + P6

C12 = P1 + P2

C21 = P3 + P4

C22 = P1 + P5 − P3 − P7

P1 = A11(B12 − B22)

P2 = (A11 + A12)B22

P3 = (A21 + A22)B11

P4 = A22(B21 − B11)

P5 = (A11 + A22)(B11 + B22)

P6 = (A12 −A22)(B21 + B22)

P7 = (A11 −A21)(B11 + B12)

T(n) = 7T(n/2) + O(n2) T(n) = O(nlog2 7) = O(n2.81)
log2 7 = 2.80735 . . .

Yasushi Kawase Advanced Core in Algorithm Design 17 / 24

Strassen’s Algorithm
Strassen(n,A,B) (assume n is a power of 2)

1 if n = 1 then Return AB;
2 P1 ← Strassen(n/2,A11,B12 − B22);
3 P2 ← Strassen(n/2,A11 + A12,B22);
4 P3 ← Strassen(n/2,A21 + A22,B11);
5 P4 ← Strassen(n/2,A22, (B21 − B11);
6 P5 ← Strassen(n/2,A11 + A22,B11 + B22);
7 P6 ← Strassen(n/2,A12 −A22,B21 + B22);
8 P7 ← Strassen(n/2,A11 −A21,B11 + B12);
9 C11 ← P5 + P4 − P2 + P6;

10 C12 ← P1 + P2;
11 C21 ← P3 + P4;
12 C22 ← P1 + P5 − P3 − P7;
13 Return C ;

Theorem
The running time of Strassen’s algorithm is O(nlog2 7) = O(n2.81)

Yasushi Kawase Advanced Core in Algorithm Design 18 / 24

State of the art
• Upper bound: O(n2.3728596) [Alman and Williams 2020]

O(n2.37188)? [Duan, Wu, Zhou 2022+]

• Lower bound: Ω(n2)

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

om
eg

a

Year

St

ra
ss

en

Pa

n

Bi
ni

, C
ap

ov
an

i,
Ro

m
an

i,
Lo

tt
i

Ro

m
an

i

Co
pp

er
sm

ith
, W

in
og

ra
d

St

ra
ss

en

Co

pp
er

sm
ith

, W
in

og
ra

d

St

ot
he

rs

W
ill

ia
m

s

Le

 G
al

l

Al

m
an

, W
ill

ia
m

s

na
iv

e

Sc
hö

nh
ag

e

https://en.wikipedia.org/wiki/Matrix_multiplication

Yasushi Kawase Advanced Core in Algorithm Design 19 / 24

https://en.wikipedia.org/wiki/Matrix_multiplication

Outline

1 Basics of Divide-and-Conquer

2 Sorting

3 Matrix multiplication

4 Closest Pair of Points

Yasushi Kawase Advanced Core in Algorithm Design 20 / 24

Closest pair of points problem

Problem
Input p1, p2, . . . , pn ∈ R2 (pi = (xi , yi))
Goal find a pair (pi , pj) that minimizes the distance d(pi , pj)

√
(xi − xj)2 + (yi − yj)2

• naive algorithm (check all pairs): Θ(n2) time
• divide-and-conquer based algorithm: O(n log n) time

Yasushi Kawase Advanced Core in Algorithm Design 21 / 24

Closest pair of points problem

Problem
Input p1, p2, . . . , pn ∈ R2 (pi = (xi , yi))
Goal find a pair (pi , pj) that minimizes the distance d(pi , pj)

√
(xi − xj)2 + (yi − yj)2

• naive algorithm (check all pairs): Θ(n2) time
• divide-and-conquer based algorithm: O(n log n) time

Yasushi Kawase Advanced Core in Algorithm Design 21 / 24

Divide-and-Conquer

Algorithm Overview

1 Sort by x-coordinate and divide into two halves (left and right);
2 Recursively solve the problem;
3 Outputs the closest pair of left–left, right–right, left–right;

Obs.: the closest pair is left–right ⇒ they lies within a distance δ
min of left–left and right–right

of L

δ

line L

δ δ

Yasushi Kawase Advanced Core in Algorithm Design 22 / 24

Check left–right points pair

• partition the strip into boxes of δ/2 per side
• each box can contain at most one point

• sort the points in the strip by y-coordinate
O(n) time by sorting whole points in advance

• for each point, it is sufficient to check
its distance to each of the next 15 points

O(n) time

line L

δ
2

δ
2

δ
2

δ
2

Yasushi Kawase Advanced Core in Algorithm Design 23 / 24

Running time

• Px : list of points P sorted by x-coordinate
• Py: list of points P sorted by y-coordinate

ClosestPair(Px ,Py)

1 if |P| ≤ 3 then return a closest pair by naive algorithm;
2 Divide into two halves and construct Qx ,Qy,Rx ,Ry;
3 δ ← min{d(ClosestPair(Qx ,Qy)), d(ClosestPair(Rx ,Ry))};
4 Extract points in the stripe and construct Sy;
5 Find the closest pair of P by checking the strip;

The total computational time is T(n) = 2T(n/2) + O(n)

Theorem
The running time of the algorithm is O(n log n)

Yasushi Kawase Advanced Core in Algorithm Design 24 / 24

	Basics of Divide-and-Conquer
	Sorting
	Matrix multiplication
	Closest Pair of Points

