Yasushi Kawase

Advanced Core in Algorithm Design #4
BAKETESR #4100

Yasushi Kawase

Oct. 25th, 2022
last update: 9:37am, October 30, 2022

Advanced Core in Algorithm Design

Schedule

Lec. #

Date Topics

[y

~NOo ok WwN

10
11
12
13

10/4 Introduction, Stable matching

10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)

10/18 Greedy Algorithms (2/2)

10/25 Divide and Conquer (1/2)

11/1 Divide and Conquer (2/2)

11/8 Dynamic Programming (1/2)
11/15 Dynamic Programming (2/2)
11/22 Thursday Classes

11/29 Network Flow (1/2)

12/6 Network Flow (2/2)

12/13 NP and Computational Intractability
12/20 Approximation Algorithms (1/2)
12/27 Approximation Algorithms (2/2)
1/10 Randomized Algorithms

Yasushi Kawase

Advanced Core in Algorithm Design

Outline

@ Basics of Divide-and-Conquer

Yasushi Kawase Advanced Core in Algorithm Design

Divide-and-Conquer

e Divide up problem into several subproblems
divide problem of size n into a subproblems of size n/b

e Solve each subproblems recursively

e Combine solutions to subproblems into overall solution
combine in f(n) time

e Total computational time for a problem of size n satisfies
T(n) = aT(n/b) + f(n)

e T(n) = O(1) when n is less than some bound

Yasushi Kawase Advanced Core in Algorithm Design

Typical Example

T(n)=2-T(n/2)4+ O(n) = T(n) = O(nlogn)

L2

Yasushi Kawase Advanced Core in Algorithm Design

Reccurence relations

Recurrence relations Computational time
T(n)=T(n/2)+0(1) T(n) = O(logn)
T(n)=2-T(n/2)+ O(1) T(n) = O(n)
T(n)=2-T(n/2)+ O(n) T(n) = O(nlogn)
T(n)=3-T(n/2)+ O(n) T(n) = O(n'°823)

O(n?) if d > log; a
T(n) = aT(n/b) + O(n?) T(n) = ¢ O(n%logn) if d =1log,a

O(n'8v®) if d <log,a

a>0,6>1,d>0

Yasushi Kawase Advanced Core in Algorithm Design

Proof sketch

O(n) if d>log,a
T(n)=a- T(n/b)+ O(n?) = T(n) =< O(nlogn) if d=log,a
O(n'er) if d <logya

Yasushi Kawase Advanced Core in Algorithm Design

Quiz
Which is the most appropriate computational time for the following?

T(n)=4-T(n/2)+ O(n)

Yasushi Kawase Advanced Core in Algorithm Design

Outline

© Sorting

Yasushi Kawase Advanced Core in Algorithm Design

Sorting problem

Problem
e Input: a list L of n elements from a totally ordered universe

e Goal: rearrange them in ascending order

Examples
e [2,3,1] —» [1,2,3]
e [4,2,8,5,7 —» [2,4,5,7,8]
o ["s”,"0","r","t"] == ["0","r","s","t"]

Yasushi Kawase Advanced Core in Algorithm Design 10 / 24

Merge sort

MergeSort(L)

if |[L| <1 then Return L;

Divide L into equal-sized sublists A and B;
A < MergeSort(A);

B < MergeSort(B);

L < Merge(A, B);

Return L;

e Merge(A, B) can be computed in O(|A| + | B|) times
Merge([3,7,12, 18], [2,11,15,23]) — [2,3,7, 11,12, 15, 18, 23]

e the total computational time is T'(n) = 2T(n/2) + O(n)
—>» T(n) = O(nlogn)

Yasushi Kawase Advanced Core in Algorithm Design 11 /24

Merge sort

MergeSort(L)

if |[L| <1 then Return L;

Divide L into equal-sized sublists A and B;
A < MergeSort(A);

B < MergeSort(B);

L < Merge(A, B);

Return L;

e Merge(A, B) can be computed in O(|A| + | B|) times
Merge([3,7,12, 18], [2,11,15,23]) — [2,3,7, 11,12, 15, 18, 23]

e the total computational time is T'(n) = 2T(n/2) + O(n)
—>» T(n) = O(nlogn)

Yasushi Kawase Advanced Core in Algorithm Design 12 / 24

Lower bound of comparisons

Theorem
Comparison sorting requires (nlog n) comparisons
e there are n! possible orderings

e if an algorithm always completes after at most k comparisons,
it cannot distinguish more than 2% cases

—> 2" > ! — k= Q(nlogn)

Yasushi Kawase Advanced Core in Algorithm Design 13 /24

Outline

© Matrix multiplication

Yasushi Kawase Advanced Core in Algorithm Design 14 / 24

Matrix multiplication

Problem
Input Given two n X n matrices A and B

Goal output their product C' = AB
naive algorithm: ©(n3) time (. ¢y = 1 aibij)

— improve it to O(n?8!)

Example (n=3)

2 3 -1 3 1 2 14 —-13 9

1 4 3 2 -4 2 = 5 —6 13

21 5 -2 3 1 -2 13 11
A B C

Yasushi Kawase Advanced Core in Algorithm Design

Approach

e partition A and B into § x 7 blocks

A A
A= B
<A21 A22>

<B11 Bl2>
Ba1 B
e the product C is

o— <C11 C12> _ <A11B11 + A12B21 A11Big + A12322>
Co1 (oo A1 Bi1 + A Boy A1 Bia + A2 Boo

e straightforward application of divide-and-conquer
T(n) =8T(n/2) + O(n?) = T(n) = O(n?) (not improved)

e Can we reduce the number of multiplications?

Yasushi Kawase Advanced Core in Algorithm Design 16 / 24

Approach

e partition A and B into § x 7 blocks

A A
A= B
<A21 A22>

<B11 Bl2>
Ba1 B
e the product C is

o— <C11 C12> _ <A11B11 + A12B21 A11Big + A12322>
Co1 (oo A1 Bi1 + A Boy A1 Bia + A2 Boo

e straightforward application of divide-and-conquer
T(n) =8T(n/2) + O(n?) = T(n) = O(n?) (not improved)

e Can we reduce the number of multiplications?
YES! 8 — 7 is possible

Yasushi Kawase Advanced Core in Algorithm Design

16 / 24

Strassen'’s trick

(Cn 012) _ <
(o1 O

Ci1=Ps+ Py— Py + Pg
Cio=P1+ Py
U1 = P3+ Py
Cyo =P+ P5s— P3— Py

A
Aoy

A12) (Bn B12)
Az) \ Bo1 B

Py = A11(B12 — Ba2)
Py = (A11 + A12) Bao
P3 = (A1 + Ag2) Byy
Py = Agy(Boy — Br1)
Ps = (A11 + A22)(B11 + Ba2)
Pg = (A12 — A22)(Ba1 + Ba2)
P7 = (A1 — A21)(Bi1 + Bi2)

T(n) = 7T(n/2) + O(n?) = T(n) = O(n'°827) = O(n?>8!)

Yasushi Kawase

Advanced Core in Algorithm Design

Strassen's Algorithm

Strassen(n, A, B) (assume n is a power of 2)

1 if n =1 then Return AB;
2 P+ Strassen(n/Q, A117 Bis — BQQ);
3 Py < Strassen(n/2, A1 + A1a, B2s);
4 P3 + Strassen(n/2, Aoy + Aso, Bi1);
5 Py« Strassen(n/?, AQQ, (Bgl = Bll);
6 P5 Strassen(n/27 Al + A227 By + BQQ);
7 Pg < Strassen(n/2, A1o — Aga, Bo1 + Baa);
8 Pr + Strassen(n/Q, Ay — Agl, B, + Blg);
9 Ci1 ¢ Ps+ Py — Py + Ps;

10 Cio + Py + Ps;

11 021 — P3 + Py,

12 022<—P1+P5—P3—P7;

13 Return C,

Theorem

The running time of Strassen’s algorithm is O(n!°827) = O(n?®1)

Yasushi Kawase Advanced Core in Algorithm Design 18 / 24

State of the art
e Upper bound: O

2371887 [Duan, Wu, Zhou 2022+]

(n2-3728596) [AIman and Williams 2020]

O(n*
e Lower bound: ©2(n?)

3

2.9
2.8
2.7
2.6
2.5

2005 2010 2015 2020

1970 1975 1980 1985 1990 1995 2000
Year

https://en.wikipedia.org/wiki/Matrix_multiplication

Yasushi Kawase Advanced Core in Algorithm Desi

https://en.wikipedia.org/wiki/Matrix_multiplication

Outline

@ Closest Pair of Points

Yasushi Kawase Advanced Core in Algorithm Design 20 / 24

Closest pair of points problem

Problem

Input p1, p2, ..., pn € R? (pi = (21, 41))
Goal find a pair (p;, pj) that minimizes the distance d(p;, p;)

e naive algorithm (check all pairs): ©(n?) time

e divide-and-conquer based algorithm: O(nlogn) time

Yasushi Kawase Advanced Core in Algorithm Design 21 /24

Closest pair of points problem

Problem

Input p1, p2, ..., pn € R? (pi = (21, 41))
Goal find a pair (p;, pj) that minimizes the distance d(p;, p;)

e naive algorithm (check all pairs): ©(n?) time

e divide-and-conquer based algorithm: O(nlogn) time

Yasushi Kawase Advanced Core in Algorithm Design 21 /24

Divide-and-Conquer

Algorithm Overview

1 Sort by z-coordinate and divide into two halves (left and right);
2 Recursively solve the problem;
3 Outputs the closest pair of left—left, right-right, left—right;

Obs.: the closest pair is left-right = they lies within a distance/cf of L
[min of left—left and right—right}

line L
° °

o)

A
Y
A
Y

Yasushi Kawase Advanced Core in Algorithm Design 22 /24

Check left—right points pair

e partition the strip into boxes of §/2 per side
e each box can contain at most one point

e sort the points in the strip by y-coordinate

O(n) time by sorting whole points in advance

e for each point, it is sufficient to check
its distance to each of the next 15 points

—» O(n) time

Yasushi Kawase

Advanced Core in Algorithm Design

line L
1 1 1 1
1 1 1 1
| i e e e |
1 1 1 1
1 1 .I 1
1 1 1 1
LI e RN EoRE e |
1 1 1 1
1 . 1 1 1
1 1 1 1
| IR TN P A |
1 1 1 1
1 1 1 1
1 1 1 1
| N ___@!
1 1 1 1
1 1 1 1
1 1 . 1 1
1 1 1 1
| i e el bl |
1 1 1 1
1 1 1 1
1 1 1 1
L s il L]
1 1 1 1
l—le—>|—>l—'
) [[)
2 2 2 2

Running time

e P, list of points P sorted by z-coordinate

e P,: list of points P sorted by y-coordinate

ClosestPair(P;, Py)

1 if |P| < 3 then return a closest pair by naive algorithm;

2 Divide into two halves and construct @, Qy, Rz, Ry;

3 § < min{d(ClosestPair(Q,, Qy)), d(ClosestPair(R,;, R,))};
4 Extract points in the stripe and construct S;

5 Find the closest pair of P by checking the strip;

The total computational time is T'(n) = 2T(n/2) + O(n)

Theorem

The running time of the algorithm is O(nlog n)

Yasushi Kawase Advanced Core in Algorithm Design 24 / 24

	Basics of Divide-and-Conquer
	Sorting
	Matrix multiplication
	Closest Pair of Points

