Advanced Core in Algorithm Design #4 算法設計要論 第4回

Yasushi Kawase 河瀬 康志

Oct. 25th, 2022

last update: 9:37am, October 30, 2022

Schedule

Lec. #	Date	Topics	
1	10/4	Introduction, Stable matching	
2	10/11	Basics of Algorithm Analysis, Greedy Algorithms $(1/2)$	
3	10/18	Greedy Algorithms (2/2)	
4	10/25	Divide and Conquer $(1/2)$	
5	11/1	Divide and Conquer $(2/2)$	
6	11/8	Dynamic Programming $(1/2)$	
7	11/15	Dynamic Programming $(2/2)$	
_	11/22	Thursday Classes	
8	11/29	Network Flow $(1/2)$	
9	12/6	Network Flow $(2/2)$	
10	12/13	NP and Computational Intractability	
11	12/20	Approximation Algorithms $(1/2)$	
12	12/27	Approximation Algorithms $(2/2)$	
13	1/10	Randomized Algorithms	

Outline

- Basics of Divide-and-Conquer
- 2 Sorting
- Matrix multiplication
- 4 Closest Pair of Points

Divide-and-Conquer

- Divide up problem into several subproblems
 divide problem of size n into a subproblems of size n/b
- Solve each subproblems recursively
- Combine solutions to subproblems into overall solution combine in f(n) time

ullet Total computational time for a problem of size n satisfies

$$T(n) = aT(n/b) + f(n)$$

• T(n) = O(1) when n is less than some bound

Typical Example

$$T(n) = 2 \cdot T(n/2) + O(n) \longrightarrow T(n) = O(n \log n)$$

Reccurence relations

Recurrence relations	Computational time	
T(n) = T(n/2) + O(1)	$T(n) = O(\log n)$	
$T(n) = 2 \cdot T(n/2) + O(1)$	$T(n) = \mathcal{O}(n)$	
$T(n) = 2 \cdot T(n/2) + \mathcal{O}(n)$	$T(n) = O(n \log n)$	
$T(n) = 3 \cdot T(n/2) + \mathcal{O}(n)$	$T(n) = \mathcal{O}(n^{\log_2 3})$	
$T(n) = aT(n/b) + O(n^d)$	$T(n) = \begin{cases} O(n^d) \\ O(n^d \log n) \\ O(n^{\log_b a}) \end{cases}$	$\begin{aligned} &\text{if } d > \log_b a \\ &\text{if } d = \log_b a \\ &\text{if } d < \log_b a \end{aligned}$

$$a > 0, b > 1, d \ge 0$$

Proof sketch

$$T(n) = a \cdot T(n/b) + \mathcal{O}(n^d) \longrightarrow T(n) = \begin{cases} \mathcal{O}(n^d) & \text{if } d > \log_b a \\ \mathcal{O}(n^d \log n) & \text{if } d = \log_b a \\ \mathcal{O}(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

Quiz

Which is the most appropriate computational time for the following?

$$T(n) = 4 \cdot T(n/2) + O(n)$$

1.
$$T(n) = O(n^{1/2})$$

- 2. T(n) = O(n)
- 3. $T(n) = O(n \log n)$
- 4. $T(n) = O(n^2)$
- 5. $T(n) = O(2^n)$

Outline

- Basics of Divide-and-Conquer
- 2 Sorting
- Matrix multiplication
- Closest Pair of Points

Sorting problem

Problem

- Input: a list L of n elements from a totally ordered universe
- Goal: rearrange them in ascending order

Examples

- $[2,3,1] \longrightarrow [1,2,3]$
- $[4, 2, 8, 5, 7] \longrightarrow [2, 4, 5, 7, 8]$

Merge sort

${\tt MergeSort}(L)$

```
 \begin{aligned} & \text{if } |L| \leq 1 \text{ then Return } L; \\ & \text{Divide } L \text{ into equal-sized sublists } A \text{ and } B; \\ & A \leftarrow \texttt{MergeSort}(A); \\ & B \leftarrow \texttt{MergeSort}(B); \\ & L \leftarrow \texttt{Merge}(A,B); \\ & \text{Return } L; \end{aligned}
```

- Merge(A, B) can be computed in O(|A| + |B|) times Merge $([3, 7, 12, 18], [2, 11, 15, 23]) \rightarrow [2, 3, 7, 11, 12, 15, 18, 23]$
- the total computational time is T(n) = 2T(n/2) + O(n) $T(n) = O(n \log n)$

Merge sort

${\tt MergeSort}(L)$

```
 \begin{aligned} & \text{if } |L| \leq 1 \text{ then Return } L; \\ & \text{Divide } L \text{ into equal-sized sublists } A \text{ and } B; \\ & A \leftarrow \texttt{MergeSort}(A); \\ & B \leftarrow \texttt{MergeSort}(B); \\ & L \leftarrow \texttt{Merge}(A,B); \\ & \text{Return } L; \end{aligned}
```

- Merge(A, B) can be computed in O(|A| + |B|) times Merge $([3, 7, 12, 18], [2, 11, 15, 23]) \rightarrow [2, 3, 7, 11, 12, 15, 18, 23]$
- the total computational time is T(n) = 2T(n/2) + O(n) $T(n) = O(n \log n)$

Lower bound of comparisons

Theorem

Comparison sorting requires $\Omega(n \log n)$ comparisons

- there are n! possible orderings
- if an algorithm always completes after at most k comparisons, it cannot distinguish more than 2^k cases

$$\longrightarrow$$
 $2^k \ge n! \implies k = \Omega(n \log n)$

Outline

- Basics of Divide-and-Conquer
- Sorting
- Matrix multiplication
- 4 Closest Pair of Points

Matrix multiplication

Problem

Input Given two $n \times n$ matrices A and B

Goal output their product C = AB

naive algorithm:
$$\Theta(n^3)$$
 time $(:c_{ij} = \sum_{k=1}^n a_{ik} b_{kj})$

 \longrightarrow improve it to $O(n^{2.81})$

Example
$$(n=3)$$

$$\begin{pmatrix} 2 & 3 & -1 \\ 1 & 4 & 3 \\ 2 & 1 & 5 \end{pmatrix} \quad \begin{pmatrix} 3 & 1 & 2 \\ 2 & -4 & 2 \\ -2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 14 & -13 & 9 \\ 5 & -6 & 13 \\ -2 & 13 & 11 \end{pmatrix}$$

$$A \qquad B \qquad C$$

Approach

• partition A and B into $\frac{n}{2} \times \frac{n}{2}$ blocks

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \qquad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

ullet the product C is

$$C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

- straightforward application of divide-and-conquer $T(n)=8\,T(n/2)+{\rm O}(n^2) \, \longrightarrow \, T(n)={\rm O}(n^3) \, \hbox{(not improved)}$
- Can we reduce the number of multiplications?

Approach

• partition A and B into $\frac{n}{2} \times \frac{n}{2}$ blocks

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \qquad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

ullet the product C is

$$C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

- straightforward application of divide-and-conquer $T(n)=8\,T(n/2)+{\rm O}(n^2) \, \longrightarrow \, T(n)={\rm O}(n^3) \, \hbox{(not improved)}$
- Can we reduce the number of multiplications? YES! $8 \rightarrow 7$ is possible

Strassen's trick

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_1 + P_5 - P_3 - P_7$$

$$P_1 = A_{11}(B_{12} - B_{22})$$

$$P_2 = (A_{11} + A_{12})B_{22}$$

$$P_3 = (A_{21} + A_{22})B_{11}$$

$$P_4 = A_{22}(B_{21} - B_{11})$$

$$P_5 = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$P_6 = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$P_7 = (A_{11} - A_{21})(B_{11} + B_{12})$$

$$T(n) = 7T(n/2) + O(n^2) \longrightarrow T(n) = O(n^{\log_2 7}) = O(n^{2.81})$$

Strassen's Algorithm

Strassen(n, A, B) (assume n is a power of 2)

```
1 if n=1 then Return AB:
 2 P_1 \leftarrow \text{Strassen}(n/2, A_{11}, B_{12} - B_{22});
 3 P_2 \leftarrow \text{Strassen}(n/2, A_{11} + A_{12}, B_{22}):
 4 P_3 \leftarrow \text{Strassen}(n/2, A_{21} + A_{22}, B_{11}):
 5 P_4 \leftarrow \text{Strassen}(n/2, A_{22}, (B_{21} - B_{11});
 6 P_5 \leftarrow \text{Strassen}(n/2, A_{11} + A_{22}, B_{11} + B_{22}):
 7 P_6 \leftarrow \text{Strassen}(n/2, A_{12} - A_{22}, B_{21} + B_{22});
 8 P_7 \leftarrow \text{Strassen}(n/2, A_{11} - A_{21}, B_{11} + B_{12});
 9 C_{11} \leftarrow P_5 + P_4 - P_2 + P_6:
10 C_{12} \leftarrow P_1 + P_2:
11 C_{21} \leftarrow P_3 + P_4:
12 C_{22} \leftarrow P_1 + P_5 - P_3 - P_7:
13 Return C:
```

Theorem

The running time of Strassen's algorithm is $O(n^{\log_2 7}) = O(n^{2.81})$

State of the art

ullet Upper bound: $\mathrm{O}(n^{2.3728596})$ [Alman and Williams 2020]

 $O(n^{2.37188})$? [Duan, Wu, Zhou 2022+]

• Lower bound: $\Omega(n^2)$

https://en.wikipedia.org/wiki/Matrix_multiplication

Outline

- Basics of Divide-and-Conque
- Sorting
- Matrix multiplication
- 4 Closest Pair of Points

Closest pair of points problem

Problem

Input
$$p_1, p_2, \dots, p_n \in \mathbb{R}^2 (p_i = (x_i, y_i))$$

$$\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Goal find a pair (p_i, p_j) that minimizes the distance $d(p_i, p_j)$

- ullet naive algorithm (check all pairs): $\Theta(n^2)$ time
- divide-and-conquer based algorithm: $O(n \log n)$ time

Closest pair of points problem

Problem

Input $p_1, p_2, \ldots, p_n \in \mathbb{R}^2$ $(p_i = (x_i, y_i))$

$$\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Goal find a pair (p_i, p_j) that minimizes the distance $d(p_i, p_j)$

- naive algorithm (check all pairs): $\Theta(n^2)$ time
- divide-and-conquer based algorithm: $O(n \log n)$ time

Divide-and-Conquer

Algorithm Overview

- 1 Sort by x-coordinate and divide into two halves (left and right);
- 2 Recursively solve the problem;
- 3 Outputs the closest pair of left-left, right-right, left-right;

Obs.: the closest pair is left–right \Rightarrow they lies within a distance δ of L

min of left-left and right-right

Check left-right points pair

- partition the strip into boxes of $\delta/2$ per side
- each box can contain at most one point
- sort the points in the strip by y-coordinate O(n) time by sorting whole points in advance
- for each point, it is sufficient to check its distance to each of the next $15\ \mathrm{points}$

 \longrightarrow O(n) time

Running time

- P_x : list of points P sorted by x-coordinate
- P_y : list of points P sorted by y-coordinate

${\tt ClosestPair}(P_x,P_y)$

- 1 if $|P| \le 3$ then return a closest pair by naive algorithm;
- 2 Divide into two halves and construct Q_x, Q_y, R_x, R_y ;
- 3 $\delta \leftarrow \min\{d(\texttt{ClosestPair}(Q_x, Q_y)), d(\texttt{ClosestPair}(R_x, R_y))\};$
- 4 Extract points in the stripe and construct S_y ;
- 5 Find the closest pair of P by checking the strip;

The total computational time is T(n) = 2T(n/2) + O(n)

Theorem

The running time of the algorithm is $O(n \log n)$