Yasushi Kawase

Advanced Core in Algorithm Design #3
BAGFTER £ 3/

Yasushi Kawase

Oct. 18th, 2022
last update: 4:30pm, October 16, 2022

Advanced Core in Algorithm Design

Schedule

Lec. #

Date Topics

~NOo o~

10
11
12
13

10/4 Introduction, Stable matching

10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)

10/18 Greedy Algorithms (2/2)

10/25 Divide and Conquer (1/2)

11/1 Divide and Conquer (2/2)

11/8 Dynamic Programming (1/2)
11/15 Dynamic Programming (2/2)
11/22 Thursday Classes

11/29 Network Flow (1/2)

12/6 Network Flow (2/2)

12/13 NP and Computational Intractability
12/20 Approximation Algorithms (1/2)
12/27 Approximation Algorithms (2/2)
1/10 Randomized Algorithms

Yasushi Kawase

Advanced Core in Algorithm Design

Outline

@ Minimum Spanning Tree Problem

Yasushi Kawase Advanced Core in Algorithm Design

Minimum spanning problem

Problem
e Input: Connected undirected graph G = (V, E), weight w, > 0 (e € E)

e Goal: Compute a minimum cost spanning tree (MST)

[subgraph that is both connected and acyclic}

Example

Yasushi Kawase Advanced Core in Algorithm Design

Minimum spanning problem

Problem
e Input: Connected undirected graph G = (V, E), weight w, > 0 (e € E)

e Goal: Compute a minimum cost spanning tree (MST)

[subgraph that is both connected and acyclic}

Example minimum cost = 14

Yasushi Kawase Advanced Core in Algorithm Design

Kruskal's algorithm

Algorithm

F < 0;

Sort the edges E by weight;

foreach e € E in increasing order of weight do
L if 'U {e} has no cycle then F < F'U {e};

Return (V, F);

Yasushi Kawase Advanced Core in Algorithm Design

Kruskal's algorithm

Algorithm

F < 0;

Sort the edges E by weight;

foreach e € E in increasing order of weight do
L if 'U {e} has no cycle then F < F'U {e};

Return (V, F);

Yasushi Kawase Advanced Core in Algorithm Design

Kruskal's algorithm

Algorithm

F < 0;

Sort the edges E by weight;

foreach e € E in increasing order of weight do
L if 'U {e} has no cycle then F < F'U {e};

Return (V, F);

Yasushi Kawase Advanced Core in Algorithm Design

Kruskal's algorithm

Algorithm

F < 0;

Sort the edges E by weight;

foreach e € E in increasing order of weight do
L if 'U {e} has no cycle then F < F'U {e};

Return (V, F);

Yasushi Kawase Advanced Core in Algorithm Design

Kruskal's algorithm

Algorithm

F < 0;

Sort the edges E by weight;

foreach e € E in increasing order of weight do
L if 'U {e} has no cycle then F < F'U {e};

Return (V, F);

Yasushi Kawase Advanced Core in Algorithm Design

Kruskal's algorithm

Algorithm

F < 0;

Sort the edges E by weight;

foreach e € E in increasing order of weight do
L if 'U {e} has no cycle then F < F'U {e};

Return (V, F);

Yasushi Kawase Advanced Core in Algorithm Design

Kruskal's algorithm

Algorithm

F < 0;

Sort the edges E by weight;

foreach e € E in increasing order of weight do
L if 'U {e} has no cycle then F < F'U {e};

Return (V, F);

Yasushi Kawase Advanced Core in Algorithm Design

Kruskal's algorithm

Algorithm

F < 0;

Sort the edges E by weight;

foreach e € E in increasing order of weight do
L if 'U {e} has no cycle then F < F'U {e};

Return (V, F);

Yasushi Kawase Advanced Core in Algorithm Design

Kruskal's algorithm

Algorithm

F < 0;

Sort the edges E by weight;

foreach e € E in increasing order of weight do
L if 'U {e} has no cycle then F < F'U {e};

Return (V, F);

Yasushi Kawase Advanced Core in Algorithm Design

Structure of Spanning Trees

Lemma for spanning trees T', T’
Vee T\T',3f € T\ T, T'"U{e} \ {f} is a spanning tree

e Thereis acycle Cin (V,T'U{e})
e Since T'isatree, CZ T, and hence 3f e C\ T C T'\ T
o T"U{e}\ {f} is a spanning tree

Yasushi Kawase Advanced Core in Algorithm Design

Correctness

Theorem
Kruskal's algorithm outputs a minimum spanning tree

Proof by contradiction

e T output of Kruskal's algorithm

o T*: MST with maximum |T'N T*| (T* # T by assumption)

e ¢€ T\ T*: the edge not in T™ that the algorithm firstly choose
df € T*\ T such that T** is a spanning tree (by lemma)

the algorithm is greedy = ¢, < ¢;
c(T*) = c(T*) + ce — ¢f < ¢(T*) =¥ T** is MST
|T N T*| =|TNT*+1—» contradicts to the definition of T

Yasushi Kawase Advanced Core in Algorithm Design

Quiz

Compute a minimum spanning tree

21)

Yasushi Kawase Advanced Core in Algorithm Design

Outline

© Job Scheduling Problem

Yasushi Kawase Advanced Core in Algorithm Design

Scheduling to Minimize Lateness

Problem
e Input: n unit-time jobs J = {1,2,...,n}
job j has deadline d; € Z and penalty p;

e Goal: minimum penalty schedule (permutation) for J

[incurred for missed deadlines]

Example

i1
4|1
pi|3

G NN
o N w
~N Wb
N B O
Ao
= o~

Yasushi Kawase Advanced Core in Algorithm Design

10 / 28

Scheduling to Minimize Lateness

Problem
e Input: n unit-time jobs J = {1,2,...,n}
job j has deadline d; € Z and penalty p;

e Goal: minimum penalty schedule (permutation) for J

[incurred for missed deadlines]

Example
j |1 2 3 45 67
|1 2 2 3 4 4
pi|3 5 6 7 2 5 1

12]3]4]5]6]7] 12[3]4a]6|7]1]5]

>

1 2 4 5 7 1 2 4 5 7
3 6 3 6
penalty =6+7+24+5+1=21 penalty =3+2=5

Yasushi Kawase Advanced Core in Algorithm Design

10 / 28

Canonical form
Definition
For a given schedule, a job is
e early if it finishes before its deadline

e |ate if it finishes after its deadline
Definition
A schedule is called canonical if

e the early jobs precede the late jobs

e the early jobs are scheduled in increasing order of deadlines

Observation
every schedule can be put into canonical form

[2[3]4[6[71L[5],
1 2 45 7
3 6

Yasushi Kawase Advanced Core in Algorithm Design

11 / 28

Processable

Definition
A set of jobs S C J is processable if § can be scheduled as early jobs

Observation
A set of jobs S is processable iff [{j € S:d; <t} <t (Vt=0,1,...,|5])

dp =1 dy =2 dz =2 dy =3 ds =4 dg =4 d7 =6
Job [6]

time @ @ @ @ @ @ @

Yasushi Kawase Advanced Core in Algorithm Design 12 /28

Processable

Definition
A set of jobs S C J is processable if § can be scheduled as early jobs

Observation
A set of jobs S is processable iff [{j € S:d; <t} <t (Vt=0,1,...,|5])

dy =1
Job

Yasushi Kawase Advanced Core in Algorithm Design 12 /28

Structure of Processable Sets

Observation
Every maximal processable set has the same size

Lemma for maximal processable sets S, T
Vse S\ T,3te T\ S, TU{s}\ {t} is processable

Yasushi Kawase Advanced Core in Algorithm Design

13 / 28

Algorithm

Greedy Algorithm

F « 0

Sort the jobs J by penalty;

foreach j € J in decreasing order of penalty do
L if F'U {j} is processable then F <+ F U {j};

Return a canonical schedule in which every j € F'is early;

Example

j |1 2 3 45 67

4|1 2 2 3 4 4 6

pj|3 5 6 7 2 5 1 ‘ ‘ >

decreasing order: 4, 3,2,6,1,5,7

Yasushi Kawase Advanced Core in Algorithm Design

14 / 28

Algorithm

Greedy Algorithm

F « 0

Sort the jobs J by penalty;

foreach j € J in decreasing order of penalty do
L if F'U {j} is processable then F <+ F U {j};

Return a canonical schedule in which every j € F'is early;

Example

j |1 2 3 45 67

4|1 2 2 3 4 4 6 4

pj|3 5 6 7 2 5 1 ‘ ‘ >

decreasing order: 4, 3,2,6,1,5,7

Yasushi Kawase Advanced Core in Algorithm Design

14 / 28

Algorithm

Greedy Algorithm

F « 0

Sort the jobs J by penalty;

foreach j € J in decreasing order of penalty do
L if F'U {j} is processable then F <+ F U {j};

Return a canonical schedule in which every j € F'is early;

Example
j |1 2 3 45 67
4|1 2 2 3 4 4 6 3|4
pj|3 5 6 7 2 5 1 ‘ ‘ >
1 2 4 7

w
S o1

decreasing order: 4, 3,2,6,1,5,7

Yasushi Kawase Advanced Core in Algorithm Design

14 / 28

Algorithm

Greedy Algorithm

F « 0

Sort the jobs J by penalty;

foreach j € J in decreasing order of penalty do
L if F'U {j} is processable then F <+ F U {j};

Return a canonical schedule in which every j € F'is early;

Example
j |1 2 3 45 67
4|1 2 2 3 4 4 6 2134
pj|3 5 6 7 2 5 1 ‘ >
1 2 4 7

w
S o1

decreasing order: 4, 3,2,6,1,5,7

Yasushi Kawase Advanced Core in Algorithm Design

14 / 28

Algorithm

Greedy Algorithm

F « 0

Sort the jobs J by penalty;

foreach j € J in decreasing order of penalty do
L if F'U {j} is processable then F <+ F U {j};

Return a canonical schedule in which every j € F'is early;

Example

j |1 2 3 45 67

4|1 2 2 3 4 4 6 213|416
pj|3 5 6 7 2 5 1

decreasing order: 4, 3,2,6,1,5,7

Yasushi Kawase Advanced Core in Algorithm Design

14 / 28

Algorithm

Greedy Algorithm

F « 0

Sort the jobs J by penalty;

foreach j € J in decreasing order of penalty do
L if F'U {j} is processable then F <+ F U {j};

Return a canonical schedule in which every j € F'is early;

Example

j |1 2 3 45 67

4|1 2 2 3 4 4 6 213|416
pj|3 5 6 7 2 5 1

decreasing order: 4, 3,2,6,1,5,7

Yasushi Kawase Advanced Core in Algorithm Design

14 / 28

Algorithm

Greedy Algorithm

F « 0

Sort the jobs J by penalty;

foreach j € J in decreasing order of penalty do
L if F'U {j} is processable then F <+ F U {j};

Return a canonical schedule in which every j € F'is early;

Example

j |1 2 3 45 67

4|1 2 2 3 4 4 6 213|416
pj|3 5 6 7 2 5 1

decreasing order: 4, 3,2,6,1,5,7

Yasushi Kawase Advanced Core in Algorithm Design

14 / 28

Algorithm

Greedy Algorithm

F « 0

Sort the jobs J by penalty;

foreach j € J in decreasing order of penalty do
L if F'U {j} is processable then F <+ F U {j};

Return a canonical schedule in which every j € F'is early;

Example
j |1 2 3 45 67
4|1 2 2 3 4 4 6 2|3|4|6]|7
pj|3 5 6 7 2 5 1 ‘ >
1 2 4 5 7

decreasing order: 4, 3,2,6,1,5,7

Yasushi Kawase Advanced Core in Algorithm Design 14 / 28

Algorithm

Greedy Algorithm

F « 0

Sort the jobs J by penalty;

foreach j € J in decreasing order of penalty do
L if F'U {j} is processable then F <+ F U {j};

Return a canonical schedule in which every j € F'is early;

Example

jl1 2 3 45 6 7

|1 2 2 3 4 4 6 2131467

pi|3 5 6 7 2 5 1 >

decreasing order: 4, 3,2,6,1,5,7

Yasushi Kawase Advanced Core in Algorithm Design

14 / 28

Correctness

Theorem
The greedy algorithm outputs an optimal schedule

Proof by contradiction
e F: the early jobs of the greedy algorithm
—> penalty of the schedule is >~ 1\ ppj = p(J) — p(F)
F*: the early jobs of the optimal schedule with maximum |F' N F*|
—> penalty of the schedule is ;. \ p+ pj = p(J) — p(F™)

s € F\ F*: the job not in F* that the algorithm firstly choose

3t € F* \ F such that F** is processable
{F* U{s}\ {t} is processable (by Iemma)}

the algorithm is greedy =% p, > p;

p(F**) = p(F*) 4+ ps — pt > p(F*) = F** implies an opt. schedule

|F'NF**| =|FNF*+1—» contradicts to the definition of F*

Yasushi Kawase Advanced Core in Algorithm Design

Quiz

What is the minimum penalty of a schedule?

i1
4 | 1
pj|3

o NN
o N w
~N Wl
N w| o
oo
I NN
— o1 o

Yasushi Kawase Advanced Core in Algorithm Design

Outline

© Matroids

Yasushi Kawase Advanced Core in Algorithm Design

Matroids

Definition
For a finite set F and a subset family Z C 2% | (E,T) is a matroid if
e lez

e XCYeI=>XeX
e X,YETZ |X|>|Y|=>IreX\Y, YU{z}eT

X € 7 is called independent set

Simple Examples
o E={1,2}, Z={0,{1},{2}} (matroid)
o E={1,2,3}, T={0,{1}, {2}, {3}, {1,2},{1,3}} (matroid)
e E={1,2,3}, T={0,{1},{2},{1,2},{1,2,3}} (not matroid)
o E={1,2,3,4}, T = {0,{1},{2}, {3}, {4}, {1,2},{3,4}} (not matroid)

Yasushi Kawase Advanced Core in Algorithm Design

Uniform matroid, Partition matroid

Proposition (Uniform matroid)
For any natural number r > 0, (E, {X C E'| | X| < r}) is a matroid

Example
o F={1,2,3,4}, r=2

o T={0,{1},{2}, {3}, {4}, {12}, {1,3},{1,4},{2,3},{2, 4}, {3,4}}

Proposition (Partition matroid)

For any partition (S1,...,S;) of Eand ¢1,...,qx € Z4+,
(E,{XCE||XNS|<¢ Vi=1,...,k)}) is a matroid

Example
e E= {1’2’374—7556}1 Sl = {17233}1 q1 = L, S? = {47576}1 Q2 = 2

o T={0,{1},{2}, {3}, {4}, {5}, {6},{1,4},{1,5},{1,6},...,{3,5,6}}

Yasushi Kawase Advanced Core in Algorithm Design

Linear matroid

Proposition F is a field

For a1, ag,...,a, € F™ and E = {a1, ag, ..., an},
(E, {X C E| X is linearly independent}) is a matroid

Example

= (e (- (e (-2

o F= {a’la az, as, 04}

e I= {07 {al}v {aQ}’ {a3}7 {a4}7 {a17 a2}7 {(11, a3}7 {a27 0,3}, {a27 a‘4}7 {a37 a‘4}}

Yasushi Kawase Advanced Core in Algorithm Design 20 / 28

Graphic matroid (cycle matroid)

Proposition

For an undirected graph G = (V, E),
(E, {X C E| X does not contain a cycle}) is a matroid

a graphic matroid is a linear matroid (F = Z5)

Example
o = {e1, e, €3 €4}

o T — {@, {61}7 {62}7 {63}7 {64}7 {617 62}’ {617 63}7 {617 64}7 {627 63}}

{627 64}7 {637 64}7 {ela €2, 64}) {ela €3, 64}7 {627 €3, 64}

€2
€3 €4

€1

Yasushi Kawase Advanced Core in Algorithm Design

21/ 28

Transversal matroid

Proposition

For a bipartite graph G = (U, V; E),

(U, {X C U | there exists a matching that covers X}) is a matroid

a transversal matroid is a linear matroid (e.g. F = R)

Example
o U= {u17 Uz, us, U4}

o T — {@, {ul}v {u2}v {ud}’ {U4}, {u17 UQ}’ {ul’ U3}, {ul’ u4}7 {u27 U5}}

{ug, ua}, {us, ua}, {ur, ug, ug}, {ur, u, ua}, {ug, ug, us}

Yasushi Kawase Advanced Core in Algorithm Design

Base

Definition
For a matroid (E,Z), B € Z is called base if Ve € E\ B, BU{e} €T

Proposition
All the bases of a matroid have the same size.

Example
o E={e1, e, €3, €4}
“T_ {@,{el},{ez}7{63}a{€4}7{e1,62},{61,63}7{61v“4}7{62’63}}

{€2a 64}7 {637 64}7 {617 €2, 64}7 {617 €3, 64}7 {62, €3, 64}

o B={{e1,e2,es},{e1, €3, s}, {e2, €3, €4}}

the set of bases

Yasushi Kawase Advanced Core in Algorithm Design

Basis axiom

Definition (basis axioms)
For a finite set F and a subset family B C 27,
« B£0
e BB eBandze€ B\ B = Jye B'\ Bsuch that B\ {z}U{y} € B

Theorem
e (E,T) is a matroid = the set of bases satisfies the basis axioms

e (E,B) satisfies the basis axioms = (E, |z 2%) is a matroid

Yasushi Kawase Advanced Core in Algorithm Design

Minimum cost base problem

Problem
e Input: matroid (E,Z), cost c: E — R

e Goal: minimize) _y c(e) subject to X is a base of (£,Z)

Greedy algorithm

I < () and sort the elements E by cost;
foreach e € FE in increasing order of cost do
| if TU{e} €T then I T U{e};

Return I[;

Theorem
The greedy algorithm outputs a minimum cost base

The proof is the same as the MST case (graphic matroid)

Yasushi Kawase Advanced Core in Algorithm Design 25 /28

Maximum weight independent set problem

Problem
e Input: matroid (E,Z), weight w: E — R

e Goal: maximize) .y w(e) subject to X € T

Greedy algorithm

I < () and sort the elements E by weight;
foreach e € E in decreasing order of cost do
| if TU{e} € T then I T U{e};

Return I[;

Theorem
The greedy algorithm outputs a maximum weight independent set

" the algorithm outputs a base X that minimizes > _ —w(e)

Yasushi Kawase Advanced Core in Algorithm Design 26 / 28

Matroids and Greedy algorithm (1/2)

Problem (0eZand YCXeT=VeT]

e Input: independence system (E,Z), weight w: £ — R

 Goal: maximize) .y w(e) subject to X € T

Greedy algorithm

I <) and sort the edges E by weight;
foreach e € E in decreasing order of cost do
| if TU{e} € T then I « T U{e};

Return [;

Theorem

For independence system (E,Z), the following two are equivalent

(i) for any w: E — R, the greedy algorithm outputs an optimal solution
(it) (E,Z) is a matroid

Yasushi Kawase Advanced Core in Algorithm Design 27 / 28

Matroids and Greedy algorithm (2/2)

Theorem
For independence system (E,Z), the following two are equivalent
(i) for any w: E — R, the greedy algorithm outputs an optimal solution
(it) (E,Z) is a matroid
Proof

o We only prove (7i) = () since (i) = (i) is already shown

e Suppose that (E,Z) is not a matroid. Then, we have

IX,YeTst |X|>|Y|andVee X\ YV, YU{e} ¢ T

e The greedy algorithm does not output an optimal solution when

1+e¢ ifeecY
w(e) =141 ifeec X\YV
0 otherwise

Yasushi Kawase Advanced Core in Algorithm Design

	Minimum Spanning Tree Problem
	Job Scheduling Problem
	Matroids

