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Schedule

Lec. # Date Topics
1 10/4 Introduction, Stable matching
2 10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)
3 10/18 Greedy Algorithms (2/2)
4 10/25 Divide and Conquer (1/2)
5 11/1 Divide and Conquer (2/2)
6 11/8 Dynamic Programming (1/2)
7 11/15 Dynamic Programming (2/2)

— 11/22 Thursday Classes
8 11/29 Network Flow (1/2)
9 12/6 Network Flow (2/2)

10 12/13 NP and Computational Intractability
11 12/20 Approximation Algorithms (1/2)
12 12/27 Approximation Algorithms (2/2)
13 1/10 Randomized Algorithms
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Outline

1 Minimum Spanning Tree Problem

2 Job Scheduling Problem

3 Matroids
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Minimum spanning problem

Problem
• Input: Connected undirected graph G = (V ,E), weight we ≥ 0 (e ∈ E)

• Goal: Compute a minimum cost spanning tree
subgraph that is both connected and acyclic

(MST)

Example
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Minimum spanning problem

Problem
• Input: Connected undirected graph G = (V ,E), weight we ≥ 0 (e ∈ E)

• Goal: Compute a minimum cost spanning tree
subgraph that is both connected and acyclic

(MST)

Example minimum cost = 14
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Kruskal’s algorithm
Algorithm

1 F ← ∅;
2 Sort the edges E by weight;
3 foreach e ∈ E in increasing order of weight do
4 if F ∪ {e} has no cycle then F ← F ∪ {e};
5 Return (V ,F);
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Structure of Spanning Trees

Lemma for spanning trees T ,T ′

∀e ∈ T \ T ′, ∃f ∈ T ′ \ T , T ′ ∪ {e} \ {f } is a spanning tree

T T ′

• There is a cycle C in (V ,T ′ ∪ {e})

• Since T is a tree, C 6⊆ T , and hence ∃f ∈ C \ T ⊆ T ′ \ T

• T ′ ∪ {e} \ {f } is a spanning tree
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Correctness
Theorem
Kruskal’s algorithm outputs a minimum spanning tree

Proof by contradiction
• T : output of Kruskal’s algorithm
• T∗: MST with maximum |T ∩ T∗| (T∗ 6= T by assumption)
• e ∈ T \ T∗: the edge not in T∗ that the algorithm firstly choose
• ∃f ∈ T∗ \ T such that T∗∗

T∗ ∪ {e} \ {f }

is a spanning tree (by lemma)

• the algorithm is greedy ce ≤ cf

• c(T∗∗) = c(T∗) + ce − cf ≤ c(T∗) T∗∗ is MST
• |T ∩ T∗∗| = |T ∩ T∗|+ 1 contradicts to the definition of T∗
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Quiz

Compute a minimum spanning tree
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Outline

1 Minimum Spanning Tree Problem

2 Job Scheduling Problem

3 Matroids
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Scheduling to Minimize Lateness
Problem
• Input: n unit-time jobs J = {1, 2, . . . ,n}

job j has deadline dj ∈ Z+ and penalty pj

• Goal: minimum penalty
incurred for missed deadlines

schedule (permutation) for J

Example

j 1 2 3 4 5 6 7
dj 1 2 2 3 4 4 6
pj 3 5 6 7 2 5 1

1 2 3 4 5 6 7
1 2

3
4 5

6
7

penalty = 6 + 7 + 2 + 5 + 1 = 21

2 3 4 6 7 1 5
1 2

3
4 5

6
7

penalty = 3 + 2 = 5
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Canonical form
Definition
For a given schedule, a job is
• early if it finishes before its deadline
• late if it finishes after its deadline

Definition
A schedule is called canonical if
• the early jobs precede the late jobs
• the early jobs are scheduled in increasing order of deadlines

Observation
every schedule can be put into canonical form

2 3 4 6 7 1 5
1 2

3
4 5

6
7
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Processable
Definition
A set of jobs S ⊆ J is processable if S can be scheduled as early jobs

Observation
A set of jobs S is processable iff |{j ∈ S : dj ≤ t}| ≤ t (∀t = 0, 1, . . . , |S |)

Job

time

1
d1 = 1

1

2
d2 = 2

2

3
d3 = 2

3

4
d4 = 3

4

5
d5 = 4

5

6
d6 = 4

6

7
d7 = 6

7
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Structure of Processable Sets
Observation
Every maximal processable set has the same size

Lemma for maximal processable sets S ,T
∀s ∈ S \ T , ∃t ∈ T \ S , T ∪ {s} \ {t} is processable

Job

time
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Algorithm
Greedy Algorithm

1 F ← ∅;
2 Sort the jobs J by penalty;
3 foreach j ∈ J in decreasing order of penalty do
4 if F ∪ {j} is processable then F ← F ∪ {j};
5 Return a canonical schedule in which every j ∈ F is early;

Example

j 1 2 3 4 5 6 7
dj 1 2 2 3 4 4 6
pj 3 5 6 7 2 5 1

decreasing order: 4, 3, 2, 6, 1, 5, 7
1 2

3
4 5

6
7
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Correctness
Theorem
The greedy algorithm outputs an optimal schedule

Proof by contradiction
• F : the early jobs of the greedy algorithm

penalty of the schedule is
∑

j∈J\F pj = p(J )− p(F)

• F∗: the early jobs of the optimal schedule with maximum |F ∩ F∗|
penalty of the schedule is

∑
j∈J\F∗ pj = p(J )− p(F∗)

• s ∈ F \ F∗: the job not in F∗ that the algorithm firstly choose
• ∃t ∈ F∗ \ F such that F∗∗

F∗ ∪ {s} \ {t} is processable (by lemma)

is processable

• the algorithm is greedy ps ≥ pt

• p(F∗∗) = p(F∗) + ps − pt ≥ p(F∗) F∗∗ implies an opt. schedule
• |F ∩ F∗∗| = |F ∩ F∗|+ 1 contradicts to the definition of F∗
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Quiz

What is the minimum penalty of a schedule?

j 1 2 3 4 5 6 7 8
dj 1 2 2 3 3 4 4 5
pj 3 5 6 7 2 5 4 1
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Outline

1 Minimum Spanning Tree Problem

2 Job Scheduling Problem

3 Matroids
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Matroids

Definition
For a finite set E and a subset family I ⊆ 2E , (E , I) is a matroid if
• ∅ ∈ I

• X ⊆ Y ∈ I ⇒ X ∈ I

• X ,Y ∈ I, |X | > |Y | ⇒ ∃x ∈ X \Y , Y ∪ {x} ∈ I

X ∈ I is called independent set

Simple Examples
• E = {1, 2}, I =

{
∅, {1}, {2}

}
(matroid)

• E = {1, 2, 3}, I =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}

}
(matroid)

• E = {1, 2, 3}, I =
{
∅, {1}, {2}, {1, 2}, {1, 2, 3}

}
(not matroid)

• E = {1, 2, 3, 4}, I =
{
∅, {1}, {2}, {3}, {4}, {1, 2}, {3, 4}

}
(not matroid)
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Uniform matroid, Partition matroid
Proposition (Uniform matroid)
For any natural number r ≥ 0, (E , {X ⊆ E | |X | ≤ r}) is a matroid

Example
• E = {1, 2, 3, 4}, r = 2

• I = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

Proposition (Partition matroid)
For any partition (S1, . . . ,Sk) of E and q1, . . . , qk ∈ Z++,
(E , {X ⊆ E | |X ∩ Si | ≤ qi (∀i = 1, . . . , k)}) is a matroid

Example
• E = {1, 2, 3, 4, 5, 6}, S1 = {1, 2, 3}, q1 = 1, S2 = {4, 5, 6}, q2 = 2

• I = {∅, {1}, {2}, {3}, {4}, {5}, {6}, {1, 4}, {1, 5}, {1, 6}, . . . , {3, 5, 6}}
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Linear matroid

Proposition
For a1, a2, . . . , an ∈ Fm

F is a field

and E = {a1, a2, . . . , an},
(E , {X ⊆ E | X is linearly independent}) is a matroid

Example

• a1 =

(
1
0

)
, a2 =

(
0
1

)
, a3 =

(
1
2

)
, a4 =

(
−1
0

)
, F = R

• E = {a1, a2, a3, a4}

• I = {∅, {a1}, {a2}, {a3}, {a4}, {a1, a2}, {a1, a3}, {a2, a3}, {a2, a4}, {a3, a4}}
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Graphic matroid (cycle matroid)
Proposition
For an undirected graph G = (V ,E),
(E , {X ⊆ E | X does not contain a cycle}) is a matroid

a graphic matroid is a linear matroid (F = Z2)

Example
• E = {e1, e2, e3, e4}

• I =

{
∅, {e1}, {e2}, {e3}, {e4}, {e1, e2}, {e1, e3}, {e1, e4}, {e2, e3}
{e2, e4}, {e3, e4}, {e1, e2, e4}, {e1, e3, e4}, {e2, e3, e4}

}

e1

e2e3 e4
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Transversal matroid
Proposition
For a bipartite graph G = (U ,V ;E),
(U , {X ⊆ U | there exists a matching that covers X}) is a matroid

a transversal matroid is a linear matroid (e.g. F = R)

Example
• U = {u1, u2, u3, u4}

• I =

{
∅, {u1}, {u2}, {u3}, {u4}, {u1, u2}, {u1, u3}, {u1, u4}, {u2, u3}
{u2, u4}, {u3, u4}, {u1, u2, u3}, {u1, u2, u4}, {u2, u3, u4}

}

u1 u2 u3 u4

v1 v2 v3
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Base

Definition
For a matroid (E , I), B ∈ I is called base if ∀e ∈ E \ B, B ∪ {e} 6∈ I

Proposition
All the bases of a matroid have the same size.

Example
• E = {e1, e2, e3, e4}

• I =

{
∅, {e1}, {e2}, {e3}, {e4}, {e1, e2}, {e1, e3}, {e1, a4}, {e2, e3}
{e2, e4}, {e3, e4}, {e1, e2, e4}, {e1, e3, e4}, {e2, e3, e4}

}
• B

the set of bases

=
{
{e1, e2, e4}, {e1, e3, e4}, {e2, e3, e4}

}
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Basis axiom

Definition (basis axioms)
For a finite set E and a subset family B ⊆ 2E ,
• B 6= ∅

• B,B′ ∈ B and x ∈ B \ B′ ⇒ ∃y ∈ B′ \ B such that B \ {x} ∪ {y} ∈ B

Theorem
• (E , I) is a matroid ⇒ the set of bases satisfies the basis axioms
• (E ,B) satisfies the basis axioms ⇒ (E ,

⋃
B∈B 2B) is a matroid
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Minimum cost base problem
Problem
• Input: matroid (E , I), cost c : E → R

• Goal: minimize
∑

e∈X c(e) subject to X is a base of (E , I)

Greedy algorithm

1 I ← ∅ and sort the elements E by cost;
2 foreach e ∈ E in increasing order of cost do
3 if I ∪ {e} ∈ I then I ← I ∪ {e};
4 Return I ;

Theorem
The greedy algorithm outputs a minimum cost base

The proof is the same as the MST case (graphic matroid)
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Maximum weight independent set problem
Problem
• Input: matroid (E , I), weight w : E → R+

• Goal: maximize
∑

e∈X w(e) subject to X ∈ I

Greedy algorithm

1 I ← ∅ and sort the elements E by weight;
2 foreach e ∈ E in decreasing order of cost do
3 if I ∪ {e} ∈ I then I ← I ∪ {e};
4 Return I ;

Theorem
The greedy algorithm outputs a maximum weight independent set

∵ the algorithm outputs a base X that minimizes
∑

e∈X −w(e)
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Matroids and Greedy algorithm (1/2)
Problem
• Input: independence system (E , I)

∅ ∈ I and Y ⊆ X ∈ I ⇒ Y ∈ I

, weight w : E → R+

• Goal: maximize
∑

e∈X w(e) subject to X ∈ I

Greedy algorithm

1 I ← ∅ and sort the edges E by weight;
2 foreach e ∈ E in decreasing order of cost do
3 if I ∪ {e} ∈ I then I ← I ∪ {e};
4 Return I ;

Theorem
For independence system (E , I), the following two are equivalent
(i) for any w : E → R+, the greedy algorithm outputs an optimal solution
(ii) (E , I) is a matroid

Yasushi Kawase Advanced Core in Algorithm Design 27 / 28



Matroids and Greedy algorithm (2/2)
Theorem
For independence system (E , I), the following two are equivalent
(i) for any w : E → R+, the greedy algorithm outputs an optimal solution
(ii) (E , I) is a matroid

Proof
• We only prove (ii)⇒ (i) since (ii)⇒ (i) is already shown
• Suppose that (E , I) is not a matroid. Then, we have
∃X ,Y ∈ I s.t. |X | > |Y | and ∀e ∈ X \Y , Y ∪ {e} 6∈ I

• The greedy algorithm does not output an optimal solution when

w(e) =


1 + ε if e ∈ Y
1 if e ∈ X \Y
0 otherwise
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