Advanced Core in Algorithm Design #3 算法設計要論 第3回

Yasushi Kawase 河瀬 康志

Oct. 18th, 2022

last update: 4:30pm, October 16, 2022

Schedule

Lec. #	Date	Topics			
1	10/4	Introduction, Stable matching			
2	10/11	Basics of Algorithm Analysis, Greedy Algorithms $(1/2)$			
3	10/18	Greedy Algorithms (2/2)			
4	10/25	Divide and Conquer $(1/2)$			
5	11/1	Divide and Conquer $(2/2)$			
6	11/8	Dynamic Programming $(1/2)$			
7	11/15	Dynamic Programming (2/2)			
	11/22	Thursday Classes			
8	11/29	Network Flow $(1/2)$			
9	12/6	Network Flow $(2/2)$			
10	12/13	NP and Computational Intractability			
11	12/20	Approximation Algorithms $(1/2)$			
12	12/27	Approximation Algorithms $(2/2)$			
13	1/10	Randomized Algorithms			

Outline

- Minimum Spanning Tree Problem
- 2 Job Scheduling Problem
- Matroids

Minimum spanning problem

Problem

- Input: Connected undirected graph G=(V,E), weight $w_e\geq 0\ (e\in E)$
- Goal: Compute a minimum cost spanning tree (MST)

subgraph that is both connected and acyclic

Minimum spanning problem

Problem

- Input: Connected undirected graph G=(V,E), weight $w_e\geq 0\ (e\in E)$
- Goal: Compute a minimum cost spanning tree (MST)

subgraph that is both connected and acyclic

Example minimum cost = 14

Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

foreach $e \in E$ in increasing order of weight **do**

if $F \cup \{e\}$ has no cycle then $F \leftarrow F \cup \{e\}$;

Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

foreach $e \in E$ in increasing order of weight **do**

Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

foreach $e \in E$ in increasing order of weight **do**

if $F \cup \{e\}$ has no cycle then $F \leftarrow F \cup \{e\}$;

Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

foreach $e \in E$ in increasing order of weight **do**

Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

foreach $e \in E$ in increasing order of weight **do**

Structure of Spanning Trees

Lemma for spanning trees T, T'

 $\forall e \in T \setminus T'$, $\exists f \in T' \setminus T$, $T' \cup \{e\} \setminus \{f\}$ is a spanning tree

- There is a cycle C in $(V, T' \cup \{e\})$
- Since T is a tree, $C \not\subseteq T$, and hence $\exists f \in C \setminus T \subseteq T' \setminus T$
- $T' \cup \{e\} \setminus \{f\}$ is a spanning tree

Correctness

Theorem

Kruskal's algorithm outputs a minimum spanning tree

Proof by contradiction

- T: output of Kruskal's algorithm
- T^* : MST with maximum $|T \cap T^*|$ $(T^* \neq T \text{ by assumption})$
- $e \in T \setminus T^*$: the edge not in T^* that the algorithm firstly choose
- $\exists f \in T^* \setminus T$ such that T^{**} is a spanning tree (by lemma)
- the algorithm is greedy \longrightarrow $c_e \leq c_f$
- $c(T^{**}) = c(T^*) + c_e c_f \le c(T^*) \longrightarrow T^{**}$ is MST
- $|T \cap T^{**}| = |T \cap T^*| + 1$ \longrightarrow contradicts to the definition of T^*

Compute a minimum spanning tree

Outline

- Minimum Spanning Tree Problem
- 2 Job Scheduling Problem
- Matroids

Scheduling to Minimize Lateness

Problem

- Input: n unit-time jobs $J=\{1,2,\ldots,n\}$ job j has deadline $d_j\in\mathbb{Z}_+$ and penalty p_j
- Goal: minimum penalty schedule (permutation) for J

incurred for missed deadlines

Scheduling to Minimize Lateness

Problem

- Input: n unit-time jobs $J=\{1,2,\ldots,n\}$ job j has deadline $d_j\in\mathbb{Z}_+$ and penalty p_j
- ullet Goal: minimum penalty schedule (permutation) for J

incurred for missed deadlines

Example

penalty =
$$6 + 7 + 2 + 5 + 1 = 21$$

penalty = 3 + 2 = 5

Canonical form

Definition

For a given schedule, a job is

- early if it finishes before its deadline
- late if it finishes after its deadline

Definition

A schedule is called canonical if

- the early jobs precede the late jobs
- the early jobs are scheduled in increasing order of deadlines

Observation

every schedule can be put into canonical form

Processable

Definition

A set of jobs $S \subseteq J$ is processable if S can be scheduled as early jobs

Observation

A set of jobs S is processable iff $|\{j \in S: d_j \leq t\}| \leq t \; (\forall t = 0, 1, \dots, |S|)$

Processable

Definition

A set of jobs $S \subseteq J$ is processable if S can be scheduled as early jobs

Observation

A set of jobs S is processable iff $|\{j \in S: d_j \leq t\}| \leq t \; (\forall t = 0, 1, \dots, |S|)$

Structure of Processable Sets

Observation

Every maximal processable set has the same size

Lemma for maximal processable sets S, T

 $\forall s \in S \setminus T$, $\exists t \in T \setminus S$, $T \cup \{s\} \setminus \{t\}$ is processable

Greedy Algorithm

$$F \leftarrow \emptyset$$
;

Sort the jobs J by penalty;

if $F \cup \{j\}$ is processable then $F \leftarrow F \cup \{j\}$;

Return a canonical schedule in which every $j \in F$ is early;

Example

Greedy Algorithm

$$F \leftarrow \emptyset$$
;

Sort the jobs J by penalty;

 $\textbf{for} \textbf{each} \ j \in J \ \textit{in decreasing order of penalty} \ \textbf{do}$

if $F \cup \{j\}$ is processable then $F \leftarrow F \cup \{j\}$;

Return a canonical schedule in which every $j \in F$ is early;

Example

Greedy Algorithm

$$F \leftarrow \emptyset$$
;

Sort the jobs J by penalty;

 $\textbf{for} \textbf{each} \ j \in J \ \textit{in decreasing order of penalty} \ \textbf{do}$

if $F \cup \{j\}$ is processable then $F \leftarrow F \cup \{j\}$;

Return a canonical schedule in which every $j \in F$ is early;

Example

Greedy Algorithm

$$F \leftarrow \emptyset$$
;

Sort the jobs J by penalty;

 $\mbox{ for each } j \in J \mbox{ in decreasing order of penalty } \mbox{ do}$

if $F \cup \{j\}$ is processable then $F \leftarrow F \cup \{j\}$;

Return a canonical schedule in which every $j \in F$ is early;

Example

j	1	2	3	4	5	6	7
$\overline{d_j}$	1	2	2	3	4	4	6
p_{j}	3	5	6	7	4 2	5	1

Greedy Algorithm

$$F \leftarrow \emptyset$$
;

Sort the jobs J by penalty;

 $\textbf{for} \textbf{each} \,\, j \in J \,\, \textit{in decreasing order of penalty} \,\, \textbf{do}$

if $F \cup \{j\}$ is processable then $F \leftarrow F \cup \{j\}$;

Return a canonical schedule in which every $j \in F$ is early;

Example

Greedy Algorithm

$$F \leftarrow \emptyset$$
;

Sort the jobs J by penalty;

 $\mbox{ for each } j \in J \mbox{ in decreasing order of penalty } \mbox{ do}$

if $F \cup \{j\}$ is processable then $F \leftarrow F \cup \{j\}$;

Return a canonical schedule in which every $j \in F$ is early;

Example

Greedy Algorithm

$$F \leftarrow \emptyset$$
;

Sort the jobs J by penalty;

if $F \cup \{j\}$ is processable then $F \leftarrow F \cup \{j\}$;

Return a canonical schedule in which every $j \in F$ is early;

Example

Greedy Algorithm

$$F \leftarrow \emptyset$$
;

Sort the jobs J by penalty;

 $\textbf{foreach}\ j \in J\ \textit{in decreasing order of penalty}\ \textbf{do}$

if $F \cup \{j\}$ is processable then $F \leftarrow F \cup \{j\}$;

Return a canonical schedule in which every $j \in F$ is early;

Example

Greedy Algorithm

$$F \leftarrow \emptyset$$
;

Sort the jobs J by penalty;

 $\textbf{foreach}\ j \in J\ \textit{in decreasing order of penalty}\ \textbf{do}$

if $F \cup \{j\}$ is processable then $F \leftarrow F \cup \{j\}$;

Return a canonical schedule in which every $j \in F$ is early;

Example

Correctness

Theorem

The greedy algorithm outputs an optimal schedule

Proof by contradiction

- F: the early jobs of the greedy algorithm
 → penalty of the schedule is ∑_{j∈J\F} p_j = p(J) p(F)
- F^* : the early jobs of the optimal schedule with maximum $|F \cap F^*|$ penalty of the schedule is $\sum_{j \in J \setminus F^*} p_j = p(J) p(F^*)$
- $s \in F \setminus F^*$: the job not in F^* that the algorithm firstly choose
- $\exists t \in F^* \setminus F$ such that F^{**} is processable $F^* \cup \{s\} \setminus \{t\}$ is processable (by lemma)
- the algorithm is greedy \longrightarrow $p_s \ge p_t$
- $p(F^{**}) = p(F^*) + p_s p_t \ge p(F^*) \longrightarrow F^{**}$ implies an opt. schedule
- $|F \cap F^{**}| = |F \cap F^*| + 1$ \longrightarrow contradicts to the definition of F^*

Quiz

What is the minimum penalty of a schedule?

j	1	2	3	4	5	6	7	8
$\overline{d_j}$	1	2	2	3	3	4	4	5
d_j p_j	3	5	6	7	2	5	4	1

Outline

- Minimum Spanning Tree Problem
- 2 Job Scheduling Problem
- Matroids

Matroids

Definition

For a finite set E and a subset family $\mathcal{I} \subseteq 2^E$, (E,\mathcal{I}) is a matroid if

- $\emptyset \in \mathcal{I}$
- $X \subseteq Y \in \mathcal{I} \Rightarrow X \in \mathcal{I}$
- $X, Y \in \mathcal{I}, |X| > |Y| \Rightarrow \exists x \in X \setminus Y, Y \cup \{x\} \in \mathcal{I}$

 $X \in \mathcal{I}$ is called independent set

Simple Examples

- $E = \{1, 2\}, \ \mathcal{I} = \{\emptyset, \{1\}, \{2\}\}\$ (matroid)
- $E = \{1, 2, 3\}, \ \mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}\} \ (\mathsf{matroid})$
- $E = \{1,2,3\}, \ \mathcal{I} = \{\emptyset,\{1\},\{2\},\{1,2\},\{1,2,3\}\}$ (not matroid)
- $E = \{1, 2, 3, 4\}, \ \mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{3, 4\}\} \ (\text{not matroid}) \}$

Uniform matroid, Partition matroid

Proposition (Uniform matroid)

For any natural number $r \geq 0$, $(E, \{X \subseteq E \mid |X| \leq r\})$ is a matroid

Example

- $E = \{1, 2, 3, 4\}, r = 2$
- $\bullet \ \mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}$

Proposition (Partition matroid)

For any partition (S_1, \ldots, S_k) of E and $q_1, \ldots, q_k \in \mathbb{Z}_{++}$,

$$(E,\ \{X\subseteq E\mid |X\cap S_i|\leq q_i\ (\forall i=1,\ldots,k)\})$$
 is a matroid

- $E = \{1, 2, 3, 4, 5, 6\}, S_1 = \{1, 2, 3\}, q_1 = 1, S_2 = \{4, 5, 6\}, q_2 = 2$
- $\mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{1, 4\}, \{1, 5\}, \{1, 6\}, \dots, \{3, 5, 6\}\}$

Linear matroid

Proposition

 \mathbb{F} is a field

For $a_1, a_2, \ldots, a_n \in \mathbb{F}^m$ and $E = \{a_1, a_2, \ldots, a_n\}$, $(E, \{X \subseteq E \mid X \text{ is linearly independent}\})$ is a matroid

•
$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $a_3 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, $\mathbb{F} = \mathbb{R}$

- $E = \{a_1, a_2, a_3, a_4\}$
- $\mathcal{I} = \{\emptyset, \{a_1\}, \{a_2\}, \{a_3\}, \{a_4\}, \{a_1, a_2\}, \{a_1, a_3\}, \{a_2, a_3\}, \{a_2, a_4\}, \{a_3, a_4\}\}$

Graphic matroid (cycle matroid)

Proposition

For an undirected graph G=(V,E), $(E,\ \{X\subseteq E\mid X\ \text{does not contain a cycle}\})$ is a matroid

a graphic matroid is a linear matroid $(\mathbb{F}=\mathbb{Z}_2)$

- $E = \{e_1, e_2, e_3, e_4\}$
- $\mathcal{I} = \begin{cases} \emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_1, e_2\}, \{e_1, e_3\}, \{e_1, e_4\}, \{e_2, e_3\} \} \\ \{e_2, e_4\}, \{e_3, e_4\}, \{e_1, e_2, e_4\}, \{e_1, e_3, e_4\}, \{e_2, e_3, e_4\} \end{cases}$

Transversal matroid

Proposition

For a bipartite graph $G=(U,\,V;E)$, $(U,\,\{X\subseteq U\mid \text{there exists a matching that covers }X\})$ is a matroid

a transversal matroid is a linear matroid (e.g. $\mathbb{F}=\mathbb{R}$)

- $U = \{u_1, u_2, u_3, u_4\}$
- $\mathcal{I} = \left\{ \begin{cases} \emptyset, \{u_1\}, \{u_2\}, \{u_3\}, \{u_4\}, \{u_1, u_2\}, \{u_1, u_3\}, \{u_1, u_4\}, \{u_2, u_3\} \\ \{u_2, u_4\}, \{u_3, u_4\}, \{u_1, u_2, u_3\}, \{u_1, u_2, u_4\}, \{u_2, u_3, u_4\} \end{cases} \right\}$

Base

Definition

For a matroid (E,\mathcal{I}) , $B\in\mathcal{I}$ is called base if $\forall e\in E\setminus B$, $B\cup\{e\}\not\in\mathcal{I}$

Proposition

All the bases of a matroid have the same size.

Example

- $E = \{e_1, e_2, e_3, e_4\}$
- $\mathcal{I} = \begin{cases} \emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_1, e_2\}, \{e_1, e_3\}, \{e_1, a_4\}, \{e_2, e_3\} \\ \{e_2, e_4\}, \{e_3, e_4\}, \{e_1, e_2, e_4\}, \{e_1, e_3, e_4\}, \{e_2, e_3, e_4\} \end{cases}$
- $\bullet \mathcal{B} = \{ \{e_1, e_2, e_4\}, \{e_1, e_3, e_4\}, \{e_2, e_3, e_4\} \}$

the set of bases

Basis axiom

Definition (basis axioms)

For a finite set E and a subset family $\mathcal{B} \subseteq 2^E$,

- $\mathcal{B} \neq \emptyset$
- $B, B' \in \mathcal{B}$ and $x \in B \setminus B' \Rightarrow \exists y \in B' \setminus B$ such that $B \setminus \{x\} \cup \{y\} \in \mathcal{B}$

Theorem

- (E,\mathcal{I}) is a matroid \Rightarrow the set of bases satisfies the basis axioms
- (E,\mathcal{B}) satisfies the basis axioms $\Rightarrow (E,\bigcup_{B\in\mathcal{B}}2^B)$ is a matroid

Minimum cost base problem

Problem

- Input: matroid (E, \mathcal{I}) , cost $c \colon E \to \mathbb{R}$
- Goal: minimize $\sum_{e \in X} c(e)$ subject to X is a base of (E, \mathcal{I})

Greedy algorithm

Return I;

Theorem

The greedy algorithm outputs a minimum cost base

The proof is the same as the MST case (graphic matroid)

Maximum weight independent set problem

Problem

- Input: matroid (E, \mathcal{I}) , weight $w \colon E \to \mathbb{R}_+$
- Goal: maximize $\sum_{e \in X} w(e)$ subject to $X \in \mathcal{I}$

Greedy algorithm

Return I;

Theorem

The greedy algorithm outputs a maximum weight independent set

 \because the algorithm outputs a base X that minimizes $\sum_{e \in X} -w(e)$

Matroids and Greedy algorithm (1/2)

Problem $\emptyset \in \mathcal{I} \text{ and } Y \subseteq X \in \mathcal{I} \Rightarrow Y \in \mathcal{I}$

- Input: independence system (E,\mathcal{I}) , weight $w\colon E \to \mathbb{R}_+$
- Goal: maximize $\sum_{e \in X} w(e)$ subject to $X \in \mathcal{I}$

Greedy algorithm

Return I;

Theorem

For independence system (E, \mathcal{I}) , the following two are equivalent

- (i) for any $w \colon E \to \mathbb{R}_+$, the greedy algorithm outputs an optimal solution
- (ii) (E, \mathcal{I}) is a matroid

Matroids and Greedy algorithm (2/2)

Theorem

For independence system (E,\mathcal{I}) , the following two are equivalent

- (i) for any $w \colon E \to \mathbb{R}_+$, the greedy algorithm outputs an optimal solution
- (ii) (E,\mathcal{I}) is a matroid

Proof

- We only prove $\overline{(ii)} \Rightarrow \overline{(i)}$ since $(ii) \Rightarrow (i)$ is already shown
- Suppose that (E,\mathcal{I}) is not a matroid. Then, we have $\exists X,\,Y\in\mathcal{I} \text{ s.t. } |X|>|Y| \text{ and } \forall e\in X\setminus Y,\ Y\cup\{e\}\not\in\mathcal{I}$
- The greedy algorithm does not output an optimal solution when

$$w(e) = \begin{cases} 1 + \epsilon & \text{if } e \in Y \\ 1 & \text{if } e \in X \setminus Y \\ 0 & \text{otherwise} \end{cases}$$