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Schedule

Lec. # Date Topics
1 10/4 Introduction, Stable matching
2 10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)
3 10/18 Greedy Algorithms (2/2)
4 10/25 Divide and Conquer (1/2)
5 11/1 Divide and Conquer (2/2)
6 11/8 Dynamic Programming (1/2)
7 11/15 Dynamic Programming (2/2)

— 11/22 Thursday Classes
8 11/29 Network Flow (1/2)
9 12/6 Network Flow (2/2)

10 12/13 NP and Computational Intractability
11 12/20 Approximation Algorithms (1/2)
12 12/27 Approximation Algorithms (2/2)
13 1/10 Randomized Algorithms
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Outline

1 Asymptotic Order of Growth

2 Graph Traversal

3 Interval Scheduling

4 Interval Partitioning
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Relationship between Input Size and Running Time

√
n n n log n n2 2n n!

1 sec. 1.0 · 1016 1.0 · 108 6.4 · 106 10000 26 11
1 min. 3.6 · 1019 6.0 · 109 3.1 · 108 77500 32 12
1 hour 1.3 · 1023 3.6 · 1011 1.5 · 1010 600000 38 15
1 day 7.5 · 1025 8.6 · 1012 3.3 · 1011 2.9 · 106 42 16

1 month 6.7 · 1028 2.6 · 1014 8.7 · 1012 1.6 · 107 47 17
1 year 9.7 · 1030 3.1 · 1015 9.7 · 1013 5.6 · 107 51 18

1 century 9.7 · 1034 3.1 · 1017 8.5 · 1015 5.6 · 108 58 20

• Maximum sizes that can be calculated in limited times
• assumption: 108 calculations per second
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Asymptotic Order

notations to represent order for sufficiently large n

1 < log n <
√

n < n < n log n < n2 < n100 < 2n < 3n < n! < nn

Asymptotic upper bound: f (n) = O(g(n))
∃k > 0, ∃n0, ∀n > n0, f (n) ≤ k · g(n)

Asymptotic lower bound: f (n) = Ω(g(n))
∃k > 0, ∃n0, ∀n > n0, f (n) ≥ k · g(n)

Asymptotically tight bound: f (n) = Θ(g(n))
f (n) = O(g(n)) and f (n) = Ω(g(n))
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Examples

• 1000n = Θ(n)

• 18n2 + 5n + 1 = Θ(n2)

• 10(n + 5)8 = Θ(n8)

• log10 n = log2 n
log2 10 = Θ(log n) (base does not matter)

• n = O(2n) (big-O is just an upper bound)

• 5 · 2n+3 = Θ(2n)

• log(n!) = Θ(n log n) (∵(n/2)n/2 ≤ n! ≤ nn)

• n100 = O(1.1n) (see next slide)

• (log n)100 = O(n0.001) (see next next slide)
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Exponential
Proposition
For every r > 1 and d > 0, we have nd = O(rn)

Proof For n ≥ d, we have

rn = (1 + (r − 1))n

=

n∑
k=0

(
n
k

)
(r − 1)k

≥
(

n
d

)
(r − 1)d =

n
d
· n − 1

d − 1
· · · · · n − d + 1

1
· (r − 1)d

≥ (r − 1)d

dd

constant

· nd
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Logarithm
Proposition
For every b > 1, d > 0 and ε > 0, we have (logb n)d = O(nε)

Proof By setting m := logb n, we have

nε = (bm)ε = (bε)m

As md = O((bε)m),

(logb n)d = O(nε)
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Transitivity

Proposition
If f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)){
∃k,∃n0, ∀n > n0, f (n) ≤ k · g(n)
∃k′, ∃n′

0, ∀n > n′
0, g(n) ≤ k′ · h(n)

∀n > max{n0, n′
0}, f (n) ≤ k · k′ · h(n)

Proposition
If f (n) = Ω(g(n)) and g(n) = Ω(h(n)), then f (n) = Ω(h(n)){
∃k,∃n0, ∀n > n0, f (n) ≥ k · g(n)
∃k′, ∃n′

0, ∀n > n′
0, g(n) ≥ k′ · h(n)

∀n > max{n0, n′
0}, f (n) ≥ k · k′ · h(n)

Proposition
If f (n) = Θ(g(n)) and g(n) = Θ(h(n)), then f (n) = Θ(h(n))
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Quiz

Find the smallest one.

1. Θ(en)

2. Θ(n!)

3. Θ(nloge n)

4. Θ((loge n)n)
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Outline

1 Asymptotic Order of Growth

2 Graph Traversal

3 Interval Scheduling

4 Interval Partitioning
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Undirected Graph G = (V ,E)

• V : set of vertices. usually n := |V |

• E : set of edges
two-element subses of V

. usually m := |E |

Example:
• V = {1, 2, 3, 4, 5}

• E =
{
{1, 2}, {1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 4}, {4, 5}

}

1
2

3

4
5
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Directed Graph G = (V ,E)

• V : set of vertices. usually n := |V |

• E : set of edges
pairs of vertices

. usually m := |E |

Example:
• V = {1, 2, 3, 4, 5}

• E =
{
(1, 3), (1, 4), (2, 1), (2, 4), (2, 5), (3, 4), (4, 5), (5, 2)

}

1
2

3

4
5
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Example (1/3): Tokyo Metro Subway

© 東京メトロ
https://www.tokyometro.jp/lang_en/station/202006_number_en.png
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Example (2/3): Les Misérables

the interactions between characters (n = 77, m = 254)
created by Donald Knuth
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Example (3/3): Webgraph

directed links between pages of the World Wide Web

https://en.wikipedia.org/wiki/Graph_drawing#/media/File:WorldWideWebAroundWikipedia.png
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Representing Graphs

Adjacency matrix
? matrix A ∈ {0, 1}n×n where

aij = 1 iff (vi , vj) ∈ E

• space complexity: O(n2)

• check (vi , vj) ∈ E : O(1)

• suitable for dense graph

Adjacency list
? n liked list, each describes

the set of neighbors
• space complexity: O(n + m)

• check (vi , vj) ∈ E : O(d)

• suitable for sparse graph

d: maximum degree
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Representing Graphs — Example

Adjacency matrix
0 1 1 1 0
1 0 0 1 1
1 0 0 1 0
1 1 1 0 1
0 1 0 1 0



Adjacency list
1 [2,3,4]

2 [1,4,5]

3 [1,4]

4 [1,2,3,5]

5 [2,4]

1
2

3

4
5
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Stack

• a data structure that follows the LIFO principle
• two basic operations

• push: add an element to the collection (O(1) time)
• pop: remove the most recently added element (O(1) time)

23

44

71

20

36

=⇒
pop

23

44

71

20 =⇒
push 47

23

44

71

20

47
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Queue

• a data structure that follows the FIFO principle
• two basic operations

• enqueue: add an element to the collection (O(1) time)
• dequeue: remove the earliest added element (O(1) time)

23

44

71

20

36

=⇒
dequeue

44

71

20

36 =⇒
enqueue 47

44

71

20

36

47
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Depth First Search

• an algorithm for graph traversal (determining s–t connectivity)
• push the next candidate to be searched on a stack
• O(m + n) time (if the graph is represented by adjacency list)

DFS algorithm startingfrom s ∈ V

1 explored[u]← False (∀u ∈ V ) and let S be a stack only with s;
2 while S is not empty do
3 pop S and let u be the popped vertex;
4 if explored[u] then continue;
5 explored[u]← True;
6 foreach {u, v} ∈ E incident to u do
7 if explored[v] then push v to S ;
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Example of DFS

• stack=[]
• u = 1

•

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5
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Example of DFS

• stack=[2, 3, 4]
• u = 1

• push 2, 3, 4

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5
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Example of DFS

• stack=[2, 3]
• u = 4

• pop

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5
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Example of DFS

• stack=[2, 3, 2, 3, 5]
• u = 4

• push 2,3,5

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

Yasushi Kawase Advanced Core in Algorithm Design 22 / 36



Example of DFS

• stack=[2, 3, 2, 3]
• u = 5

• pop

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

Yasushi Kawase Advanced Core in Algorithm Design 22 / 36



Example of DFS

• stack=[2, 3, 2, 3, 2]
• u = 5

• push 2

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5
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Example of DFS

• stack=[2, 3, 2, 3]
• u = 2

• pop

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5
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Example of DFS

• stack=[2, 3, 2]
• u = 3

• pop

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5
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Example of DFS

• stack=[2, 3]
• u = 3

• pop

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5
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Example of DFS

• stack=[2]
• u = 3

• pop

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5
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Example of DFS

• stack=[]
• u = 3

• pop

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5
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Example of DFS

• stack=[]
• u = 3

•

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5
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Breadth First Search

• an algorithm for graph traversal (determining s–t connectivity and dist.)
• enqueue the next candidate to be searched on a queue
• O(m + n) time (if the graph is represented by adjacency list)

BFS algorithm starting from s ∈ V

1 dist[u]←∞ (∀u ∈ V ) and let Q be a queue only with (s, 0);
2 while Q is not empty do
3 dequeue Q and let (u, d) be the dequeued vertex–distance pair;
4 if dist[u] <∞ then continue;
5 dist[u]← d;
6 foreach {u, v} ∈ E incident to u do
7 if explored[v] then enqueue (v, d + 1) to Q;
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Example of BFS

• queue=[]
• (u, d) = (1, 0)

•

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2
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Example of BFS

• queue=[(2, 1), (3, 1), (4, 1)]
• (u, d) = (1, 0)

• enqueue 2, 3, 4

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2
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Example of BFS

• queue=[(3, 1), (4, 1)]
• (u, d) = (2, 1)

• dequeue

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2
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Example of BFS

• queue=[(3, 1), (4, 1), (4, 2), (5, 2)]
• (u, d) = (2, 1)

• enqueue 4, 5

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2
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Example of BFS

• queue=[(4, 1), (4, 2), (5, 2)]
• (u, d) = (3, 1)

• dequeue

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2
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Example of BFS

• queue=[(4, 1), (4, 2), (5, 2), (4, 2)]
• (u, d) = (3, 1)

• enqueue 4

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2
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Example of BFS

• queue=[(4, 2), (5, 2), (4, 2)]
• (u, d) = (4, 1)

• dequeue

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2
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Example of BFS

• queue=[(4, 2), (5, 2), (4, 2), (5, 2)]
• (u, d) = (4, 1)

• enqueue 5

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2

Yasushi Kawase Advanced Core in Algorithm Design 24 / 36



Example of BFS

• queue=[(5, 2), (4, 2), (5, 2)]
• (u, d) = (4, 1)

• dequeue

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2
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Example of BFS

• queue=[(4, 2), (5, 2)]
• (u, d) = (5, 2)

• dequeue

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2
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Example of BFS

• queue=[(5, 2)]
• (u, d) = (5, 2)

• dequeue

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2
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Example of BFS

• queue=[]
• (u, d) = (5, 2)

• dequeue

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2
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Example of BFS

• queue=[]
• (u, d) = (5, 2)

•

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

0
1

1

1
2

Yasushi Kawase Advanced Core in Algorithm Design 24 / 36



DFS vs. BFS

Depth First Search
• implemented using Stack
• may not give the shortest paths
• require less memory

Breadth First Search
• implemented using Queue
• give the shortest paths
• require more memory

1
2

3

4
5
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Outline

1 Asymptotic Order of Growth

2 Graph Traversal

3 Interval Scheduling

4 Interval Partitioning
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Interval Scheduling

Problem
• Input: jobs J = {1, 2, . . . ,n}, job j starts at s(j) and finishes at f (j)

• Goal: find maximum subset of mutually compatible
two jobs that don’t overlap

jobs

Example

time
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Interval Scheduling

Problem
• Input: jobs J = {1, 2, . . . ,n}, job j starts at s(j) and finishes at f (j)

• Goal: find maximum subset of mutually compatible
two jobs that don’t overlap

jobs

Example

time
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Algorithm
Greedy Algorithm

1 R← J , A← ∅;
2 while R 6= ∅ do
3 Let i ∈ arg min{f (i) | i ∈ R};
4 A← A ∪ {i};
5 R← {j ∈ R | s(j) > f (i)};
6 Return A;

Example

time
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Optimality
Theorem
The greedy algorithm outputs an optimal solution

Proof
• A = {i1, i2, . . . , ik}: algorithm’s output (f (i1) ≤ · · · ≤ f (ik))

• A∗ = {j1, j2, . . . , jm}: optimal solution (f (j1) ≤ · · · ≤ f (jm))

• Claim: f (ir) ≤ f (jr) for all r = 1, 2, . . . , k

• Base case: f (i1) ≤ f (j1) by the definition
• Induction step: f (ir−1) ≤ f (jr−1)⇒ f (ir) ≤ f (jr)

jr−1 jr

ir−1 ir

• If m > k, the algorithm can choose jk+1 after ik Contradiction
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Quiz

What is the optimal value of the following interval scheduling?

time
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Outline

1 Asymptotic Order of Growth

2 Graph Traversal

3 Interval Scheduling

4 Interval Partitioning
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Interval Partitioning (Interval Coloring)
Problem
• Input: jobs J = {1, 2, . . . ,n}, job j starts at s(j) and finishes at f (j)

• Goal: minimum number of people
each person can do at most one job simultaneously

who can do all jobs

Example

time
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Interval Partitioning (Interval Coloring)
Problem
• Input: jobs J = {1, 2, . . . ,n}, job j starts at s(j) and finishes at f (j)

• Goal: minimum number of people
each person can do at most one job simultaneously

who can do all jobs

Example (optimal = 3)

time
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Basic observation
Observation
the optimal value ≥ depth

maximum number of pairwise overlapping intervals

Theorem
the optimal value = depth

Example (depth = 3)

time
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Basic observation
Observation
the optimal value ≥ depth

maximum number of pairwise overlapping intervals

Theorem
the optimal value = depth

Example (depth = 3)

time
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Algorithm
Greedy Algorithm

1 sort and relabel the jobs by their start times (s(1) ≤ · · · ≤ s(n));
2 let d be the depth and prepare d people;
3 for j ← 1, 2, . . . ,n do
4 assign j to any person who is free within time (s(j), f (j));

Example

time
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Correctness
Theorem
The greedy algorithm correctly assigns the jobs to d people

Proof: when the algorithm assigns job j, at least one person is free

the greedy algorithm is correct

s(j) f (j)
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Quiz

What is the optimal value of the following interval partitioning?

time
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