Advanced Core in Algorithm Design #2 算法設計要論 第2回

Yasushi Kawase 河瀬 康志

October 11th, 2022

last update: 1:31pm, October 4, 2022

Schedule

Lec. #	Date	Topics
1	10/4	Introduction, Stable matching
2	10/11	Basics of Algorithm Analysis, Greedy Algorithms $(1/2)$
3	10/18	Greedy Algorithms (2/2)
4	10/25	Divide and Conquer $(1/2)$
5	11/1	Divide and Conquer $(2/2)$
6	11/8	Dynamic Programming $(1/2)$
7	11/15	Dynamic Programming (2/2)
_	11/22	Thursday Classes
8	11/29	Network Flow $(1/2)$
9	12/6	Network Flow $(2/2)$
10	12/13	NP and Computational Intractability
11	12/20	Approximation Algorithms $(1/2)$
12	12/27	Approximation Algorithms $(2/2)$
13	1/10	Randomized Algorithms

Outline

- Asymptotic Order of Growth
- ② Graph Traversal
- Interval Scheduling
- Interval Partitioning

Relationship between Input Size and Running Time

	\sqrt{n}	n	$n \log n$	n^2	2^n	n!
1 sec.	$1.0 \cdot 10^{16}$	$1.0 \cdot 10^{8}$	$6.4 \cdot 10^6$	10000	26	11
1 min.	$3.6 \cdot 10^{19}$	$6.0 \cdot 10^9$	$3.1 \cdot 10^{8}$	77500	32	12
1 hour	$1.3 \cdot 10^{23}$	$3.6\cdot10^{11}$	$1.5\cdot 10^{10}$	600000	38	15
1 day	$7.5 \cdot 10^{25}$	$8.6\cdot10^{12}$	$3.3\cdot 10^{11}$	$2.9 \cdot 10^{6}$	42	16
1 month	$6.7 \cdot 10^{28}$	$2.6 \cdot 10^{14}$	$8.7 \cdot 10^{12}$	$1.6 \cdot 10^{7}$	47	17
1 year	$9.7 \cdot 10^{30}$	$3.1\cdot10^{15}$	$9.7 \cdot 10^{13}$	$5.6 \cdot 10^{7}$	51	18
1 century	$9.7 \cdot 10^{34}$	$3.1 \cdot 10^{17}$	$8.5\cdot10^{15}$	$5.6\cdot10^8$	58	20

- Maximum sizes that can be calculated in limited times
- ullet assumption: 10^8 calculations per second

Asymptotic Order

notations to represent order for sufficiently large $\,n\,$

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^{100} < 2^n < 3^n < n! < n^n$$

Asymptotic upper bound: f(n) = O(g(n))

$$\exists k > 0, \ \exists n_0, \ \forall n > n_0, \ f(n) \le k \cdot g(n)$$

Asymptotic lower bound: $f(n) = \Omega(g(n))$

$$\exists k > 0, \ \exists n_0, \ \forall n > n_0, \ f(n) \ge k \cdot g(n)$$

Asymptotically tight bound: $f(n) = \Theta(g(n))$

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

Examples

- $1000n = \Theta(n)$
- $18n^2 + 5n + 1 = \Theta(n^2)$
- $10(n+5)^8 = \Theta(n^8)$
- $\log_{10} n = \frac{\log_2 n}{\log_2 10} = \Theta(\log n)$ (base does not matter)
- $n = O(2^n)$ (big-O is just an upper bound)
- $\bullet \ 5 \cdot 2^{n+3} = \Theta(2^n)$
- $\log(n!) = \Theta(n \log n)$ $(:(n/2)^{n/2} \le n! \le n^n)$
- $n^{100} = O(1.1^n)$ (see next slide)
- $(\log n)^{100} = O(n^{0.001})$ (see next next slide)

Exponential

Proposition

For every r > 1 and d > 0, we have $n^d = O(r^n)$

Proof For $n \geq d$, we have

$$\begin{split} r^n &= (1+(r-1))^n \\ &= \sum_{k=0}^n \binom{n}{k} (r-1)^k \\ &\geq \binom{n}{d} (r-1)^d = \frac{n}{d} \cdot \frac{n-1}{d-1} \cdot \dots \cdot \frac{n-d+1}{1} \cdot (r-1)^d \\ &\geq \frac{(r-1)^d}{d^d} \cdot n^d \\ &\stackrel{\text{constant}}{} \end{split}$$

Logarithm

Proposition

For every b>1, d>0 and $\epsilon>0$, we have $(\log_b n)^d=\mathrm{O}(n^\epsilon)$

Proof By setting $m := \log_b n$, we have

$$n^{\epsilon} = (b^m)^{\epsilon} = (b^{\epsilon})^m$$

As $m^d = \mathrm{O}((b^\epsilon)^m)$,

$$(\log_b n)^d = \mathcal{O}(n^{\epsilon})$$

Transitivity

Proposition

If
$$f(n) = O(g(n))$$
 and $g(n) = O(h(n))$, then $f(n) = O(h(n))$

$$\begin{cases} \exists k, \exists n_0, \forall n > n_0, f(n) \le k \cdot g(n) \\ \exists k', \exists n'_0, \forall n > n'_0, g(n) \le k' \cdot h(n) \end{cases} \quad \forall n > \max\{n_0, n'_0\}, f(n) \le k \cdot k' \cdot h(n)$$

Proposition

If
$$f(n) = \Omega(g(n))$$
 and $g(n) = \Omega(h(n))$, then $f(n) = \Omega(h(n))$

$$\begin{cases} \exists k, \exists n_0, \forall n > n_0, f(n) \ge k \cdot g(n) \\ \exists k', \exists n'_0, \forall n > n'_0, g(n) \ge k' \cdot h(n) \end{cases} \quad \forall n > \max\{n_0, n'_0\}, f(n) \ge k \cdot k' \cdot h(n)$$

Proposition

If
$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$, then $f(n) = \Theta(h(n))$

Quiz

Find the smallest one.

- 1. $\Theta(e^n)$
- 2. $\Theta(n!)$
- 3. $\Theta(n^{\log_e n})$
- 4. $\Theta((\log_e n)^n)$

Outline

- Asymptotic Order of Growth
- ② Graph Traversal
- Interval Scheduling
- Interval Partitioning

Undirected Graph G = (V, E)

- V: set of vertices. usually $n \coloneqq |V|$
- E: set of edges. usually $m \coloneqq |E|$

two-element subses of
$$V$$

Example:

- $V = \{1, 2, 3, 4, 5\}$
- $E = \{\{1,2\},\{1,3\},\{1,4\},\{2,4\},\{2,5\},\{3,4\},\{4,5\}\}$

Directed Graph G = (V, E)

- V: set of vertices. usually $n \coloneqq |V|$
- E: set of edges. usually $m\coloneqq |E|$ pairs of vertices

Example:

- $V = \{1, 2, 3, 4, 5\}$
- $E = \{(1,3), (1,4), (2,1), (2,4), (2,5), (3,4), (4,5), (5,2)\}$

Example (1/3): Tokyo Metro Subway

© 東京メトロ

https://www.tokyometro.jp/lang_en/station/202006_number_en.png

Example (2/3): Les Misérables

the interactions between characters ($n=77,\ m=254$) created by Donald Knuth

Example (3/3): Webgraph

directed links between pages of the World Wide Web

https://en.wikipedia.org/wiki/Graph_drawing#/media/File:WorldWideWebAroundWikipedia.png

Representing Graphs

Adjacency matrix

- $\star \ \, \text{matrix} \, \, A \in \{0,1\}^{n \times n} \, \, \text{where} \\ a_{ij} = 1 \, \, \text{iff} \, \, (v_i,v_j) \in E$
- space complexity: $O(n^2)$
- check $(v_i, v_j) \in E$: O(1)
- suitable for dense graph

Adjacency list

- \star n liked list, each describes the set of neighbors
- space complexity: O(n+m)
- check $(v_i, v_i) \in E$: O(d)
- suitable for sparse graph

d: maximum degree

Representing Graphs — Example

Adjacency matrix

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Adjacency list

- 1 [2,3,4]
- 2 [1,4,5]
- 3 [1,4]
- 4 [1,2,3,5]
 - 5 [2,4]

Stack

- a data structure that follows the LIFO principle
- two basic operations
 - push: add an element to the collection (O(1) time)
 - pop: remove the most recently added element (O(1) time)

Queue

- a data structure that follows the FIFO principle
- two basic operations
 - enqueue: add an element to the collection (O(1) time)
 - dequeue: remove the earliest added element (O(1) time)

36				47
20	\Rightarrow	36	\implies	36
71	dequeue	20	enqueue 47	20
44		71		71
23		44		44

Depth First Search

- ullet an algorithm for graph traversal (determining $s\!-\!t$ connectivity)
- push the next candidate to be searched on a stack
- $\mathrm{O}(m+n)$ time (if the graph is represented by adjacency list)

```
 \begin{aligned} \mathsf{DFS} & \mathsf{algorithm} & \mathsf{startingfrom} \ s \in V \\ & \mathsf{explored}[u] \leftarrow \mathsf{False} \ (\forall u \in V) \ \mathsf{and} \ \mathsf{let} \ S \ \mathsf{be} \ \mathsf{a} \ \mathsf{stack} \ \mathsf{only} \ \mathsf{with} \ s; \\ & \mathsf{while} \ S \ \mathsf{is} \ \mathsf{not} \ \mathsf{empty} \ \mathsf{do} \\ & \mathsf{pop} \ S \ \mathsf{and} \ \mathsf{let} \ u \ \mathsf{be} \ \mathsf{the} \ \mathsf{popped} \ \mathsf{vertex}; \\ & \mathsf{if} \ \mathsf{explored}[u] \ \mathsf{then} \ \mathsf{continue}; \\ & \mathsf{explored}[u] \leftarrow \mathsf{True}; \\ & \mathsf{foreach} \ \{u,v\} \in E \ \mathit{incident} \ \mathsf{to} \ u \ \mathsf{do} \\ & \mathsf{let} \ \mathsf{lot} \ \mathsf{lot}
```

- stack=[]
- u = 1

- stack=[2, 3, 4]
- u = 1
- push 2,3,4

- stack=[2, 3]
- u = 4
- pop

- stack=[2, 3, 2, 3, 5]
- u = 4
- push 2,3,5

- stack=[2, 3, 2, 3]
- u = 5
- pop

- stack=[2, 3, 2, 3, 2]
- u = 5
- push 2

- stack=[2, 3, 2, 3]
- u = 2
- pop

- stack=[2, 3, 2]
- u = 3
- pop

- stack=[2, 3]
- u = 3
- pop

- stack=[2]
- u = 3
- pop

- stack=[]
- u = 3
- pop

- stack=[]
- u = 3

Breadth First Search

- ullet an algorithm for graph traversal (determining $s\!-\!t$ connectivity and dist.)
- enqueue the next candidate to be searched on a queue
- O(m+n) time (if the graph is represented by adjacency list)

```
BFS algorithm starting from s \in V \operatorname{dist}[u] \leftarrow \infty \ (\forall u \in V) \ \text{and let} \ Q \ \text{be a queue only with} \ (s,0); \mathbf{while} \ Q \ \text{is not empty do} | \ \operatorname{dequeue} \ Q \ \operatorname{and let} \ (u,d) \ \operatorname{be the dequeued vertex-distance pair}; \mathbf{if} \ \operatorname{dist}[u] < \infty \ \mathbf{then \ continue}; \operatorname{dist}[u] \leftarrow d; \mathbf{foreach} \ \{u,v\} \in E \ \mathit{incident \ to} \ u \ \mathbf{do} | \ \mathbf{if} \ \operatorname{explored}[v] \ \mathbf{then} \ \operatorname{enqueue} \ (v,d+1) \ \operatorname{to} \ Q;
```

- queue=[]
- (u, d) = (1, 0)

- queue=[(2,1),(3,1),(4,1)]
- (u, d) = (1, 0)
- enqueue 2, 3, 4

- queue=[(3,1),(4,1)]
- (u, d) = (2, 1)
- dequeue

- queue=[(3,1),(4,1),(4,2),(5,2)]
- (u, d) = (2, 1)
- enqueue 4,5

- queue=[(4,1),(4,2),(5,2)]
- (u, d) = (3, 1)
- dequeue

- queue=[(4,1),(4,2),(5,2),(4,2)]
- (u, d) = (3, 1)
- ullet enqueue 4

- queue=[(4,2),(5,2),(4,2)]
- (u, d) = (4, 1)
- dequeue

- queue=[(4,2),(5,2),(4,2),(5,2)]
- (u, d) = (4, 1)
- enqueue 5

- queue=[(5,2),(4,2),(5,2)]
- (u, d) = (4, 1)
- dequeue

- queue=[(4,2),(5,2)]
- (u, d) = (5, 2)
- dequeue

- queue=[(5,2)]
- (u, d) = (5, 2)
- dequeue

- queue=[]
- (u, d) = (5, 2)
- dequeue

- queue=[]
- (u, d) = (5, 2)

.

DFS vs. BFS

Depth First Search

- implemented using Stack
- may not give the shortest paths
- require less memory

Breadth First Search

- implemented using Queue
- give the shortest paths
- require more memory

Outline

- Asymptotic Order of Growth
- ② Graph Traversal
- Interval Scheduling
- Interval Partitioning

Interval Scheduling

Problem

- Input: jobs $J = \{1, 2, \dots, n\}$, job j starts at s(j) and finishes at f(j)
- Goal: find maximum subset of mutually compatible jobs

two jobs that don't overlap

Interval Scheduling

Problem

- Input: jobs $J = \{1, 2, \dots, n\}$, job j starts at s(j) and finishes at f(j)
- Goal: find maximum subset of mutually compatible jobs

two jobs that don't overlap

Algorithm

Greedy Algorithm

```
\begin{split} R \leftarrow J, \ A \leftarrow \emptyset; \\ \textbf{while} \ R \neq \emptyset \ \textbf{do} \\ & \quad | \ \text{Let} \ i \in \arg\min\{f(i) \mid i \in R\}; \\ & \quad A \leftarrow A \cup \{i\}; \\ & \quad R \leftarrow \{j \in R \mid s(j) > f(i)\}; \end{split}
```

Return A;

Optimality

Theorem

The greedy algorithm outputs an optimal solution

Proof

- $A = \{i_1, i_2, \dots, i_k\}$: algorithm's output $(f(i_1) \leq \dots \leq f(i_k))$
- $A^* = \{j_1, j_2, \dots, j_m\}$: optimal solution $(f(j_1) \leq \dots \leq f(j_m))$
- Claim: $f(i_r) \leq f(j_r)$ for all $r = 1, 2, \dots, k$
 - Base case: $f(i_1) \le f(j_1)$ by the definition
 - Induction step: $f(i_{r-1}) \le f(j_{r-1}) \Rightarrow f(i_r) \le f(j_r)$

• If m > k, the algorithm can choose j_{k+1} after $i_k \longrightarrow$ Contradiction

Quiz

What is the optimal value of the following interval scheduling?

Outline

- Asymptotic Order of Growth
- 2 Graph Traversal
- Interval Scheduling
- Interval Partitioning

Interval Partitioning (Interval Coloring)

Problem

- Input: jobs $J = \{1, 2, \dots, n\}$, job j starts at s(j) and finishes at f(j)
- Goal: minimum number of people who can do all jobs

each person can do at most one job simultaneously

Interval Partitioning (Interval Coloring)

Problem

- Input: jobs $J = \{1, 2, \dots, n\}$, job j starts at s(j) and finishes at f(j)
- Goal: minimum number of people who can do all jobs

each person can do at most one job simultaneously

Example (optimal = 3)

Basic observation

Observation maximum number of pairwise overlapping intervals

the optimal value $\geq \frac{depth}{depth}$

Basic observation

Observation

maximum number of pairwise overlapping intervals

the optimal value $\geq \frac{depth}{depth}$

Theorem

the optimal value = depth

Example (depth = 3)

time

Algorithm

Greedy Algorithm

sort and relabel the jobs by their start times $(s(1) \le \cdots \le s(n))$; let d be the depth and prepare d people; for $j \leftarrow 1, 2, \dots, n$ do

assign j to any person who is free within time (s(j), f(j));

Correctness

Theorem

The greedy algorithm correctly assigns the jobs to d people

Proof: when the algorithm assigns job j, at least one person is free

→ the greedy algorithm is correct

Quiz

What is the optimal value of the following interval partitioning?

