Yasushi Kawase

Advanced Core in Algorithm Design #13
BAFTER £ 13

Yasushi Kawase

R RE

Jan. 10th, 2023

last update: 12:17pm, January 10, 2023

Advanced Core in Algorithm Design

Schedule

Lec. #

Date Topics

~NOo ok~ WwWwN

8
9
10
11
12
13

10/4 Introduction, Stable matching

10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)

10/18 Greedy Algorithms (2/2)

10/25 Divide and Conquer (1/2)

11/1 Divide and Conquer (2/2)

11/8 Dynamic Programming (1/2)
11/15 Dynamic Programming (2/2)
11/22 Thursday Classes

11/29 Network Flow (1/2)

12/6 Network Flow (2/2)

12/13 NP and Computational Intractability
12/20 Approximation Algorithms (1/2)
12/27 Approximation Algorithms (2/2)
1/10 Randomized Algorithms

Yasushi Kawase

Advanced Core in Algorithm Design

Outline

@ Randomized Quick Sort

Yasushi Kawase Advanced Core in Algorithm Design

Sorting problem revisited

Problem
e Input: a list L of n elements from a totally ordered universe

e Goal: rearrange them in ascending order

Examples
e [2,3,1] —» [1,2,3]
e [4,2,8,5,7 —» [2,4,5,7,8]
o ['s","0","r","t"] =¥ ["0","r","s","t"]

Merge sort solves sorting in O(nlog n) time, but we study another algorithm

Merge sort requires n/2 extra spaces

Yasushi Kawase Advanced Core in Algorithm Design

Quick Sort
gsort(L)

if |[L| <1 then Return L;

Let = be the first element of L;

A+ JeeLl|e<z], B« [e€L|e=z],and C«[ec L|e> x|
Return gsort(A) + B + gsort(C);

Quick sort works in-place

e Optimistic case: |4|,|B| ~ |L|/2
T(n) =2T(n/2)+ O(n) =—» T(n) = O(nlogn)

e Worst case: |A| =0 (L is sorted in descending order)
T(n) = T(n—1)+ O(n) = T(n) = O(n?)

[10,9,8,7,6,5,4,3,2,1]

Yasushi Kawase Advanced Core in Algorithm Design

Median-of-three Quick Sort
tgsort(L)

if |[L| <1 then Return L;

Let x be the median of the first, middle, last elements of L;

A« JeeL|e<z|,B<[ecL|e=z],and C«+[e€ L|e> z;
Return tgsort(A) + B + tgsort(C);

e a better estimate of the optimal pivot (the true median)

e but still requires O(n?) time in the worst case

0 16 32 48 64

Doug Mcllroy: “A Killer Adversary for Quicksort”, 1999

Yasushi Kawase Advanced Core in Algorithm Design

6 /21

Randomized Quick Sort

rgsort(L)

if |[L| <1 then Return L;

Choose an element z uniformly at random from L;

A+ JeeLl|e<z], B« [e€L|e=z],and C«[ec L|e> x|
Return rgsort(A4) + B + rgsort(();

e Let a; be the 7th smallest element in L

e a; and qg; (¢ < j) are compared only if one of them is selected as z first
in aj, aj41,...,a; —»they are compared with probability j—12‘+1

e The expected number of comparisons (=~ computational complexity) is

n n 2 n n—i+l 9 n n 1
Y X e X =200 ¢ =Oulogn)
=1 j=i+1 i=1 k=2 i=1 k=1

[S 1+f1"_%d.r: 1+logn}

Yasushi Kawase Advanced Core in Algorithm Design

Outline

© Minimum Cut Problem

Yasushi Kawase Advanced Core in Algorithm Design

(Global) Min-cut Problem

Problem
e Input: connected undirected graph G = (V, E) ({e={uv}cB:ucs ve s}

e Goal: find a partition (S, T') of V with minimum capacity cap(S)

Example

()

/ /

This problem can be solved by using s—t cut algorithm | V| — 1 times. But we study a simpler algorithm.

Yasushi Kawase Advanced Core in Algorithm Design

(Global) Min-cut Problem

Problem
e Input: connected undirected graph G = (V, E) ({e={uv}cB:ucs ve s}

e Goal: find a partition (S, T') of V with minimum capacity cap(S)

Example cap(S) = 2

4

/ (Y

This problem can be solved by using s—t cut algorithm | V| — 1 times. But we study a simpler algorithm.

Yasushi Kawase Advanced Core in Algorithm Design

Karger's algorithm

while | V| > 2 do
Pick an edge uniformly at random and contract it;
Remove self-loops;

Return the partition corresponding to the remaining two vertices;

contract e

= N

contract o contract

- I — OO RO
E—O =

contract contract

- Xy —-

Yasushi Kawase Advanced Core in Algorithm Design 10 / 21

Analysis
Notations:
e (: the set of minimum cut edges
e k:=|C|and n:=|V]|
e &;: the event of not picking an edge of C' at ith step

Observations:
e At each ith step,

e degree of any vertices is at least k —» #edges > k- ”%H

L4 Pr[5i|51»-~75i71]Zl_k(n_ikwrn:l—anl
2

e no edge of C is ever picked with probability at least

2 2

n—2 n—2 9
QSZ]_};II(n—i+1> n(n—1)>n2

Pr

Yasushi Kawase Advanced Core in Algorithm Design 1 /21

Amplifying the success probability

o Karger's algorithm succeeds with probability 2/n?

e By running ";log% times, the success probability is at least

n? 1 1
2 % log < 1 log <
)T ()
n €

where the inequality holds by (1 — z)* < 1/e (Vz > 0)

Yasushi Kawase Advanced Core in Algorithm Design 12 /21

Outline

© !dentity Testing

Yasushi Kawase Advanced Core in Algorithm Design

Verifying Matrix Multiplication

Problem
e Input: n x n matrices A, B, and C

e Goal: check whether AB = C or not

Naive algorithm: compute D = AB and check if D = C (O(n*3™) time)

Can we do better by randomization?

Examples
2 5 4 2 3 19
A_(3 1>’B_<—1 3>’C_<11 9)

Yasushi Kawase Advanced Core in Algorithm Design 14 /21

Freivald's Algorithm

Pick r € {0,1}™ where each r; is independent and uniform over {0,1};
Return YES if ABr = Cr and NO otherwise;

Running time: O(n?)

Theorem
The above algorithm outputs
e YES with probability 1 if AB=C
e YES with probability at most 1/2 if AB # C
Proof: If (AB); # Cj; for some 1,7, then ABrO £ cr© or ABr(M) £ cr()

for r®) = (r, ... 11,2, T4 1,)

Repeating log% times gives an O(n?log %) time algorithm with error < ¢

Yasushi Kawase Advanced Core in Algorithm Design

Polynomial Identity Testing

Problem
e Input: a polynomial p(zi,...,z,) of degree at most d
e Goal: check whether p(z1,...,2,) =0 or not
Example

e d=2, p(z,y) = 2> — zy —» NO
o d=3, p(z,y) = (v +2y)%(z — y) — 2*(z + 3y) + 45> —» YES

o d=n% p(z11,. .., Tnp) = det(A) = 3, s, s80(0) [Ti2) Tio(s)

If n =1, it is sufficient to check p(0) = p(1) =--- = p(d) = 0 or not

since any nonzero polynomial of degree d has at most d real roots by the fundamental theorem of algebra
What if n > 1? Now, p(z,y) = 2 — y has infinitely many roots.

Yasushi Kawase Advanced Core in Algorithm Design

16 / 21

Algorithm

Let S C R be any set of size 2d;
Pick a1, ..., a, independently and uniformly at random from S;
Return YES if p(aq,...,a,) =0 and NO otherwise;

Schwartz—Zippel Lemma

If p is a nonzero polynomial of degree d and S C R, then

d
Pr [p(at,...,an) =0] < —
1yeenr0n HEU(S) B

This can be prOVed by induction on n (see, e.g., [Motwani and Raghavan: Randomized Algorithms])
Theorem
The above algorithm outputs

e YES with probability 1 if p =0

e YES with probability at most 1/2 if p £ 0

Yasushi Kawase Advanced Core in Algorithm Design 17 /21

Outline

@ Randomized Approximation for Max 3-SAT

Yasushi Kawase Advanced Core in Algorithm Design

Max 3-SAT

Problem
e |nput: a CNF formula ® where each clause contains exactly 3 literals

e Goal: find a truth assignment that satisfies as many clauses as possible

Examples

P = (71\/ 1‘2\/$3)/\(l‘1 VTQV[EQ,)/\(ZHVIEQVM)

—» 3 clauses are satisfiable by setting 7y =1, =1, 23=1, iy = 1

Yasushi Kawase Advanced Core in Algorithm Design

Algorithm

set each variable independently to 0 or 1 with probability %;
Return the assignment;

Proposition

The above algorithm is a %—approximation in expectation.

e Each clause is satisfied with probability 1 — (%)3 =

|~ ool

e The expected number of satisfied clauses is Z|®| > % - OPT.

Corollary

There always exists a truth assignment that satisfies at least %\<I>| clauses.

Can we obtain such a solution?
—> Yes, by repeatedly applying the algorithm.

Yasushi Kawase Advanced Core in Algorithm Design 20 /21

Repetition

while True do
set each variable independently to 0 or 1 with probability % each;
If the assignment satisfies 6 clauses Return the assignment;

Lemma
For a series of independent trials with success probability p,
the expected number of trials until the first success is 1/p.

Proof

e Let N be the number of trials until the first success
o Pr[N >j]=(1-p)!
o B[N] =272, Pr[N > 4] = >72,(1 - Pyt = 1—(%—;)) - %

Yasushi Kawase Advanced Core in Algorithm Design 21 /21

Repetition

while True do
set each variable independently to 0 or 1 with probability % each;
If the assignment satisfies 6 clauses Return the assignment;

Let p; be the probability that a random assignment satisfies exactly j clauses
e success probability p :== Zj>9 Dj

. L 3| . . .
o [E[#satisfaction] is % @] = Zg.zloj P = Ej<9j “pj+ ij@] * pj

© Xm0l S|P D s pi =2 p
° Djcod pi<(0—-1)-3gpi=(0—-1)-(1—-p)

g12l-(0-1) g2 (§|®—5) 1

e = @

e Hence, p >] = 3q]

—> The expected number of trials is at most 8|®|.

Yasushi Kawase Advanced Core in Algorithm Design 21 /21

	Randomized Quick Sort
	Minimum Cut Problem
	Identity Testing
	Randomized Approximation for Max 3-SAT

