
Advanced Core in Algorithm Design #13
算法設計要論 第 13回

Yasushi Kawase
河瀬 康志

Jan. 10th, 2023
last update: 12:17pm, January 10, 2023

Yasushi Kawase Advanced Core in Algorithm Design 1 / 21

Schedule

Lec. # Date Topics
1 10/4 Introduction, Stable matching
2 10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)
3 10/18 Greedy Algorithms (2/2)
4 10/25 Divide and Conquer (1/2)
5 11/1 Divide and Conquer (2/2)
6 11/8 Dynamic Programming (1/2)
7 11/15 Dynamic Programming (2/2)

— 11/22 Thursday Classes
8 11/29 Network Flow (1/2)
9 12/6 Network Flow (2/2)

10 12/13 NP and Computational Intractability
11 12/20 Approximation Algorithms (1/2)
12 12/27 Approximation Algorithms (2/2)
13 1/10 Randomized Algorithms

Yasushi Kawase Advanced Core in Algorithm Design 2 / 21

Outline

1 Randomized Quick Sort

2 Minimum Cut Problem

3 Identity Testing

4 Randomized Approximation for Max 3-SAT

Yasushi Kawase Advanced Core in Algorithm Design 3 / 21

Sorting problem revisited

Problem
• Input: a list L of n elements from a totally ordered universe
• Goal: rearrange them in ascending order

Examples
• [2, 3, 1] [1, 2, 3]

• [4, 2, 8, 5, 7] [2, 4, 5, 7, 8]

• [”s”,”o”,”r”,”t”] [”o”,”r”,”s”,”t”]

Merge sort solves sorting in O(n log n) time, but we study another algorithm
Merge sort requires n/2 extra spaces

Yasushi Kawase Advanced Core in Algorithm Design 4 / 21

Quick Sort

qsort(L)

1 if |L| ≤ 1 then Return L;
2 Let x be the first element of L;
3 A← [e ∈ L | e < x], B ← [e ∈ L | e = x], and C ← [e ∈ L | e > x];
4 Return qsort(A) + B + qsort(C);

Quick sort works in-place

• Optimistic case: |A|, |B| ≈ |L|/2
T(n) = 2T(n/2) + O(n) T(n) = O(n log n)

• Worst case: |A| = 0 (L is sorted in descending order)
T(n) = T(n − 1) + O(n) T(n) = O(n2)

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Yasushi Kawase Advanced Core in Algorithm Design 5 / 21

Median-of-three Quick Sort
tqsort(L)

1 if |L| ≤ 1 then Return L;
2 Let x be the median of the first, middle, last elements of L;
3 A← [e ∈ L | e < x], B ← [e ∈ L | e = x], and C ← [e ∈ L | e > x];
4 Return tqsort(A) + B + tqsort(C);

• a better estimate of the optimal pivot (the true median)

• but still requires O(n2) time in the worst case

Doug McIlroy: “A Killer Adversary for Quicksort”, 1999

Yasushi Kawase Advanced Core in Algorithm Design 6 / 21

Randomized Quick Sort

rqsort(L)

1 if |L| ≤ 1 then Return L;
2 Choose an element x uniformly at random from L;
3 A← [e ∈ L | e < x], B ← [e ∈ L | e = x], and C ← [e ∈ L | e > x];
4 Return rqsort(A) + B + rqsort(C);

• Let ai be the ith smallest element in L

• ai and aj (i < j) are compared only if one of them is selected as x first
in ai , ai+1, . . . , aj they are compared with probability 2

j−i+1

• The expected number of comparisons (≈ computational complexity) is

n∑
i=1

n∑
j=i+1

2
j − i + 1

=

n∑
i=1

n−i+1∑
k=2

2
k
≤ 2

n∑
i=1

n∑
k=1

1
k

≤ 1 +
∫ n

1
1
x dx = 1 + log n

= O(n log n)

Yasushi Kawase Advanced Core in Algorithm Design 7 / 21

Outline

1 Randomized Quick Sort

2 Minimum Cut Problem

3 Identity Testing

4 Randomized Approximation for Max 3-SAT

Yasushi Kawase Advanced Core in Algorithm Design 8 / 21

(Global) Min-cut Problem
Problem
• Input: connected undirected graph G = (V ,E)

• Goal: find a partition (S ,T) of V with minimum capacity cap(S)

|{e = {u, v} ∈ E : u ∈ S , v 6∈ S}|

Example

This problem can be solved by using s–t cut algorithm |V | − 1 times. But we study a simpler algorithm.

Yasushi Kawase Advanced Core in Algorithm Design 9 / 21

(Global) Min-cut Problem
Problem
• Input: connected undirected graph G = (V ,E)

• Goal: find a partition (S ,T) of V with minimum capacity cap(S)

|{e = {u, v} ∈ E : u ∈ S , v 6∈ S}|

Example cap(S) = 2

S

T

This problem can be solved by using s–t cut algorithm |V | − 1 times. But we study a simpler algorithm.

Yasushi Kawase Advanced Core in Algorithm Design 9 / 21

Karger’s algorithm

1 while |V | > 2 do
2 Pick an edge uniformly at random and contract it;
3 Remove self-loops;
4 Return the partition corresponding to the remaining two vertices;

1

2 3

4

5

6

7

contract 1

2 35

6

4, 7

contract
1

2 35 4, 6, 7

contract

2 31, 5 4, 6, 7

contract

2 1, 5 3, 4, 6, 7

contract

1, 2, 5 3, 4, 6, 7

Yasushi Kawase Advanced Core in Algorithm Design 10 / 21

Analysis
Notations:
• C : the set of minimum cut edges
• k := |C | and n := |V |

• Ei : the event of not picking an edge of C at ith step

Observations:
• At each ith step,

• degree of any vertices is at least k #edges ≥ k · n−i+1
2

• Pr[Ei | E1, . . . , Ei−1] ≥ 1− k
k(n−i+1)

2
= 1− 2

n−i+1

• no edge of C is ever picked with probability at least

Pr

[n−2⋂
i=1
Ei

]
≥

n−2∏
i=1

(
1− 2

n − i + 1

)
=

2
n(n − 1)

>
2
n2

Yasushi Kawase Advanced Core in Algorithm Design 11 / 21

Amplifying the success probability

• Karger’s algorithm succeeds with probability 2/n2

• By running n2

2 log 1
ε times, the success probability is at least

1−
(

1− 2
n2

) n2
2 log 1

ε

≥ 1−
(

1
e

)log 1
ε

= 1− ε,

where the inequality holds by (1− x)x ≤ 1/e (∀x > 0)

Yasushi Kawase Advanced Core in Algorithm Design 12 / 21

Outline

1 Randomized Quick Sort

2 Minimum Cut Problem

3 Identity Testing

4 Randomized Approximation for Max 3-SAT

Yasushi Kawase Advanced Core in Algorithm Design 13 / 21

Verifying Matrix Multiplication

Problem
• Input: n × n matrices A, B, and C

• Goal: check whether AB = C or not

Naive algorithm: compute D = AB and check if D = C (O(n2.372) time)

Can we do better by randomization?

Examples

A =

(
2 5
3 1

)
, B =

(
4 2
−1 3

)
, C =

(
3 19
11 9

)

Yasushi Kawase Advanced Core in Algorithm Design 14 / 21

Freivald’s Algorithm

1 Pick r ∈ {0, 1}n where each ri is independent and uniform over {0, 1};
2 Return YES if ABr = Cr and NO otherwise;

Running time: O(n2)

Theorem
The above algorithm outputs
• YES with probability 1 if AB = C

• YES with probability at most 1/2 if AB 6= C

Proof: If (AB)ij 6= Cij for some i, j, then ABr(0) 6= Cr(0) or ABr(1) 6= Cr(1)
for r(x) = (r1, . . . , ri−1, x, ri+1, . . . , rn)

Repeating log 1
ε times gives an O(n2 log 1

ε) time algorithm with error ≤ ε

Yasushi Kawase Advanced Core in Algorithm Design 15 / 21

Polynomial Identity Testing
Problem
• Input: a polynomial p(x1, . . . , xn) of degree at most d

• Goal: check whether p(x1, . . . , xn) ≡ 0 or not

Example
• d = 2, p(x, y) = x2 − xy NO

• d = 3, p(x, y) = (x + 2y)2(x − y)− x2(x + 3y) + 4y3 YES

• d = n2, p(x11, . . . , xnn) = det(A) =
∑

σ∈Sn
sgn(σ)

∏n
i=1 xiσ(i)

If n = 1, it is sufficient to check p(0) = p(1) = · · · = p(d) = 0 or not
since any nonzero polynomial of degree d has at most d real roots by the fundamental theorem of algebra

What if n > 1? Now, p(x, y) = x2 − y has infinitely many roots.

Yasushi Kawase Advanced Core in Algorithm Design 16 / 21

Algorithm

1 Let S ⊆ R be any set of size 2d;
2 Pick α1, . . . , αn independently and uniformly at random from S ;
3 Return YES if p(α1, . . . , αn) = 0 and NO otherwise;

Schwartz–Zippel Lemma
If p is a nonzero polynomial of degree d and S ⊆ R, then

Pr
α1,...,αn

i.i.d.∼ U(S)
[p(α1, . . . , αn) = 0] ≤ d

|S |

This can be proved by induction on n (see, e.g., [Motwani and Raghavan: Randomized Algorithms])

Theorem
The above algorithm outputs
• YES with probability 1 if p ≡ 0

• YES with probability at most 1/2 if p 6≡ 0
Yasushi Kawase Advanced Core in Algorithm Design 17 / 21

Outline

1 Randomized Quick Sort

2 Minimum Cut Problem

3 Identity Testing

4 Randomized Approximation for Max 3-SAT

Yasushi Kawase Advanced Core in Algorithm Design 18 / 21

Max 3-SAT

Problem
• Input: a CNF formula Φ where each clause contains exactly 3 literals
• Goal: find a truth assignment that satisfies as many clauses as possible

Examples

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

3 clauses are satisfiable by setting x1 = 1, x2 = 1, x3 = 1, x4 = 1

Yasushi Kawase Advanced Core in Algorithm Design 19 / 21

Algorithm

1 set each variable independently to 0 or 1 with probability 1
2 ;

2 Return the assignment;

Proposition
The above algorithm is a 7

8 -approximation in expectation.

• Each clause is satisfied with probability 1−
(1

2
)3

= 7
8 .

• The expected number of satisfied clauses is 7
8 |Φ| ≥

7
8 ·OPT.

Corollary
There always exists a truth assignment that satisfies at least 7

8 |Φ| clauses.

Can we obtain such a solution?
Yes, by repeatedly applying the algorithm.

Yasushi Kawase Advanced Core in Algorithm Design 20 / 21

Repetition

1 while True do
2 set each variable independently to 0 or 1 with probability 1

2 each;
3 If the assignment satisfies θ

d 7
8 · |Φ|e

clauses Return the assignment;

Lemma
For a series of independent trials with success probability p,
the expected number of trials until the first success is 1/p.

Proof
• Let N be the number of trials until the first success
• Pr[N ≥ j] = (1− p)j−1

• E[N] =
∑∞

j=1 Pr[N ≥ j] =
∑∞

j=1(1− p)j−1 = 1
1−(1−p) =

1
p

Yasushi Kawase Advanced Core in Algorithm Design 21 / 21

Repetition

1 while True do
2 set each variable independently to 0 or 1 with probability 1

2 each;
3 If the assignment satisfies θ

d 7
8 · |Φ|e

clauses Return the assignment;

Let pj be the probability that a random assignment satisfies exactly j clauses
• success probability p :=

∑
j≥θ pj

• E[#satisfaction] is 7
8 · |Φ| =

∑|Φ|
j=0 j · pj =

∑
j<θ j · pj +

∑
j≥θ j · pj

•
∑

j≥θ j · pj ≤ |Φ| ·
∑

j≥θ pj = |Φ| · p

•
∑

j<θ j · pj ≤ (θ − 1) ·
∑

j<θ pj = (θ − 1) · (1− p)

• Hence, p ≥
7
8 |Φ|−(θ−1)
|Φ|−(θ−1) ≥

7
8 |Φ|−(7

8 |Φ|− 1
8)

|Φ| = 1
8|Φ|

The expected number of trials is at most 8|Φ|.

Yasushi Kawase Advanced Core in Algorithm Design 21 / 21

	Randomized Quick Sort
	Minimum Cut Problem
	Identity Testing
	Randomized Approximation for Max 3-SAT

