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Schedule

Lec. #

Date  Topics
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10
11
12
13

10/4  Introduction, Stable matching

10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)

10/18 Greedy Algorithms (2/2)

10/25 Divide and Conquer (1/2)

11/1  Divide and Conquer (2/2)

11/8  Dynamic Programming (1/2)
11/15 Dynamic Programming (2/2)
11/22  Thursday Classes

11/29 Network Flow (1/2)

12/6  Network Flow (2/2)

12/13 NP and Computational Intractability
12/20 Approximation Algorithms (1/2)
12/27  Approximation Algorithms (2/2)
1/10  Randomized Algorithms
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Coping with NP-hardness

What can we do for an NP-hard problem

e Exponential time algorithms

e Heuristic algorithms

e Approximation algorithms

e FPT (fixed parameter tractable) algorithms
e Parallelism

e Randomization

e Quantum computation

Yasushi Kawase Advanced Core in Algorithm Design



Approximation algorithm

Definition
For a maximization problem “max f(z) s.t. z € X",
a solution z* € X is an a-approximation solution if f(z*) > «a - OPT

Definition
For a minimization problem “min f(z) s.t. z € X",
a solution z* € X is an a-approximation solution if f(z*) < a - OPT

Definition
An a-approximation algorithm is a polynomial-time algorithm that finds
an a-approximation solution for any instance
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Load balancing

Problem

e Input: m identical machines, n jobs; job j has processing time t;

e Goal: find an assignment that minimizes makespan

(partition (A(1),...., A(m)))

Example

. A
time 1

Y
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Hardness of Load balancing

Theorem

Load balancing problem is NP-hard even if m = 2

Proof: PARTITION <p Load-Balance

PARTITION Problem
Given ay, az, ..., an € Zy, is there I C [n] such that >, a; = >0 ai?
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List scheduling algorithm

Algorithm

1forj«1,2,...,ndo
2 L assign job j to a machine ¢ that has smallest load;

Example
- A
time
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Approximation ratio of list scheduling

Theorem

List scheduling algorithm is a (2 — 1/m)-approximation

Proof
e OPT > 3% | t; and OPT > max]_, t; > t;-

o EjeA(i*) tj = ALG and ZjeA(z’) tj > ALG — tj« for all M;
© X Yjeaw i = mALG — (m — 1)t —»ALG < (2- L)OPT

ALG“ .......................................................................

ALG — tj« |- I .............................................. I ______

M, e M

Y

bottleneck machine
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Worst case of list scheduling

m machines, first m(m — 1) jobs have length 1, last job has length m
— list scheduling algorithm outputs a (2 — 1/m)-approximation solution

. A
tlme‘

. A
time?l

>

My

>

My ... M, M, My ... M,

Y

ALG=(m—-1)+m OPT =m
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Improved algorithm
Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that ¢, > o > -+ - > t,;

for j < 1,2,...,ndo
L assign job j to a machine ¢ that has smallest load;

Example
. A
time

1 M, My My

1 2 3 4 5
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Approximation ratio of LPT

Theorem
LPT algorithm is a 1.5-approximation
Proof W.L.O.G. |A(i*)| > 2 otherwise OPT = ALG = ¢,
1 1
© OPT > 53 01t = 5 2oith 2ojeaqs b = ALG — tj-
e OPT > tm + tm+1 > 2tj* because Imachine gets two jobs from 1,2,...,m+ 1

o ALG = (ALG — tj+) + t» < OPT + 2OPT = 1.5- OPT

A

ALG .......................................................................

ALG — t;.

M, M;

bottleneck machine
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Approximation ratio of LPT (improved)

Theorem

LPT algorithm is a 4/3-approximation

Proof W.L.O.G. |A(i*)| > 2 otherwise OPT = ALG = ¢,

e If ;- < OPT/3, then ALG = (ALG — ;=) + tj» < 5 - OPT

e If t;« > OPT, opt. sol assigns < 2 jobs from 1,2,...,j* on every machine

—» ALG = t2m+1—j* + tj* = OPT

A

ALG .......................................................................

M, e M;s

bottleneck machine
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Weighted Vertex Cover Problem

Problem
e Input: Undirected graph G = (V, E) with cost ¢c: V — R,

e Goal: find a minimum weight vertex cover

[S C V is a vertex cover if each edge is incident to at least one vertex in SJ

This problem is NP-hard even when ¢, =1 (Yo € V)

Example
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Weighted Vertex Cover Problem

Problem
e Input: Undirected graph G = (V, E) with cost ¢: V — R

e Goal: find a minimum weight vertex cover

[S C V' is a vertex cover if each edge is incident to at least one vertex in SJ

This problem is NP-hard even when ¢, =1 (Vv € V)

Example

weight = 13
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LP relaxation

(Integral) Vertex cover
min ) oy Ty Stz + 2, > 1 (V{u,v} € E), 2,€{0,1} (Vve V)

Relaxed vertex cover
min ) oy Ty St o+ 2, 21 (V{u,v} € E), 2,€[0,1] (Vve V)

Observations
° OPTint > OPTreIax

e Relaxed vertex cover can be solved in polynomial time

(ellipsoid algorithm or interior point algorithm for LP)
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LP rounding algorithm

Relaxed vertex cover
min Yy ety Stz + 2, >1 (V{u,v} € E), z,€[0,1] Vve V)

Algorithm

1 Solve the relaxed vertex cover and let z* be the optimal solution;
2 Return S ={ve V |z >1/2};

Theorem

The LP rounding algorithm is a 2-approximation
e Feasibility: V{u,v} € E, z > 1/2 or z} > 1/2 —» {u, v} is covered
o Approx. ratio: Y cqwy <23 1 CuTy =2 OPT™™ < 2.0PT™
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LP rounding algorithm

Relaxed vertex cover
min Yy ety Stz + 2, >1 (V{u,v} € E), z,€[0,1] Vve V)

Algorithm

1 Solve the relaxed vertex cover and let z* be the optimal solution;
2 Return S ={ve V |z >1/2};

Theorem
The LP rounding algorithm is a 2-approximation

e Feasibility: V{u,v} € E, z > 1/2 or z} > 1/2 —» {u, v} is covered
o Approx. ratio: Y cqwy <23 1 CuTy =2 OPT™™ < 2.0PT™

A(2 — €)-approx. alg. if the unique game conjecture is true [Khot and Regev 2008]

{a complexity assumption stronger than P # NP}
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Quiz

Compute the output of the LP rounding algorithm

OPT  weight = 13 LP rounding  weight = 722
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Traveling Salesman Problem

Problem
e Input: Complete undirected graph G = (V, E) with distance d: £ — R

e Goal: find a shortest cycle that visits all vertices exactly once

Example

Yasushi Kawase Advanced Core in Algorithm Design 21 /27



Traveling Salesman Problem

Problem
e Input: Complete undirected graph G = (V, E) with distance d: £ — R

e Goal: find a shortest cycle that visits all vertices exactly once

Example

length = 11
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Inapproximability

Theorem

Unless P = NP, there is no a-approximation algorithm for any o > 1

e From a Hamiltonian-cycle instance G = (V, E), construct
NP-complete 1 if E
d(u’v){ f {u,0} €

alVI+1 if{u,v} € E

e OPT = |V]if “yes" and OPT > «| V| + 1 if “no”
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Metric Traveling Salesman Problem

Problem

e Input: Complete undirected graph G = (V, E) with distance d: £ — R
where d(u, w) < d(u,v) + d(v, w) for every u,v,w € V

e Goal: find a shortest cycle that visits all vertices exactly once

Example

Not metric
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Hardness of metric TSP

Theorem
Metric TSP is NP-hard

e From a Hamiltonian-cycle instance G = (V, E), construct

NP-complete 1 if E
dw):{  {u.0} €

2 if{u,v}¢FE

e OPT = |V]if “yes" and OPT > | V| + 1 if “no”
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Simple 2-approximation algorithm

1 Find a minimum spanning tree T

2 Double each edge in T' (making Eulerian graph);

3 Find an Eulerian tour W on this graph (by DFS);

4 Delete all duplicates in W by keeping the first visit to each vertex u;

Theorem
The above algorithm is 2-approximation

.+ ALG < 2d(T) < 20PT
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Christofides algorithm (christofides 1976]

1 Find a minimum spanning tree T}
2 Compute a minimum weight perfect matching M in the complete
graph over the odd-degree vertices in T

3 Find an Eulerian tour W on T U M,
4 Delete all duplicates in W by keeping the first visit to each vertex u;

Theorem
The above algorithm is 1.5-approximation

-~ ALG < d(T) + d(M) < OPT + 0.50PT = 1.50PT
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metric TSP

Can we improve Christofides algorithm?

Theorem [Karlin, Klein, and Gharan 2020]

3(1.5 — €)-approx. randomized algorithm for metric TSP for some ¢ > 10736

Theorem [Karlin, Klein, and Gharan 2022/12/13]

3(1.5 — €)-approx. deterministic algorithm for metric TSP for some € > 10736

Theorem [Karpinski, Lampis, and Schmied 2015]
A 123/122-approximation algorithm for metric TSP unless P = NP
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