Advanced Core in Algorithm Design #11 算法設計要論 第11回

Yasushi Kawase 河瀬 康志

Dec. 20th, 2022

last update: 12:21pm, December 20, 2022

Schedule

Lec. #	Date	Topics
1	10/4	Introduction, Stable matching
2	10/11	Basics of Algorithm Analysis, Greedy Algorithms $(1/2)$
3	10/18	Greedy Algorithms $(2/2)$
4	10/25	Divide and Conquer $(1/2)$
5	11/1	Divide and Conquer $(2/2)$
6	11/8	Dynamic Programming $(1/2)$
7	11/15	Dynamic Programming $(2/2)$
	11/22	Thursday Classes
8	11/29	Network Flow $(1/2)$
9	12/6	Network Flow $(2/2)$
10	12/13	NP and Computational Intractability
11	12/20	Approximation Algorithms $(1/2)$
12	12/27	Approximation Algorithms $(2/2)$
13	1/10	Randomized Algorithms

Outline

- Approximation algorithm
- Load balancing problem
- Vertex Cover
- Traveling Salesman Problem

Coping with NP-hardness

What can we do for an NP-hard problem

- Exponential time algorithms
- Heuristic algorithms
- Approximation algorithms
- FPT (fixed parameter tractable) algorithms
- Parallelism
- Randomization
- Quantum computation

Approximation algorithm

Definition

For a maximization problem " $\max f(x)$ s.t. $x \in X$ ", $0 \le \alpha \le 1$ a solution $x^* \in X$ is an α -approximation solution if $f(x^*) \ge \alpha \cdot \mathrm{OPT}$

Definition

For a minimization problem " $\min f(x)$ s.t. $x \in X$ ", a solution $x^* \in X$ is an α -approximation solution if $f(x^*) \leq \alpha \cdot \mathrm{OPT}$

Definition

An α -approximation algorithm is a polynomial-time algorithm that finds an α -approximation solution for any instance

Outline

- Approximation algorithm
- 2 Load balancing problem
- Vertex Cover
- Traveling Salesman Problem

Load balancing

Problem

- ullet Input: m identical machines, n jobs; job j has processing time t_j
- Goal: find an assignment that minimizes makespan

$$\boxed{\mathsf{partition}\;(A(1),\ldots,A(m))}$$

Example

Hardness of Load balancing

Theorem

Load balancing problem is NP-hard even if m=2

Proof: PARTITION \leq_P Load-Balance

PARTITION Problem

Given $a_1,a_2,\ldots,a_n\in\mathbb{Z}_+$, is there $I\subseteq [n]$ such that $\sum_{i\in I}a_i=\sum_{i\not\in I}a_i$?

- 1 for $j \leftarrow 1, 2, ..., n$ do
 - **2** $\ \ \ \$ assign job j to a machine i that has smallest load;

- 1 for $j \leftarrow 1, 2, ..., n$ do
- **2** igspace assign job j to a machine i that has smallest load;

- 1 for $j \leftarrow 1, 2, ..., n$ do
 - **2** igspace assign job j to a machine i that has smallest load;

- 1 for $j \leftarrow 1, 2, \ldots, n$ do
- 2 \bigcup assign job j to a machine i that has smallest load;

- 1 for $j \leftarrow 1, 2, ..., n$ do
- 2 \bigcup assign job j to a machine i that has smallest load;

- 1 for $j \leftarrow 1, 2, ..., n$ do
- 2 \bigcup assign job j to a machine i that has smallest load;

Approximation ratio of list scheduling

Theorem

List scheduling algorithm is a (2-1/m)-approximation

Proof

- OPT $\geq \frac{1}{m} \sum_{j=1}^{n} t_j$ and OPT $\geq \max_{j=1}^{n} t_j \geq t_{j^*}$
- $\sum_{j \in A(i^*)} t_j = \text{ALG}$ and $\sum_{j \in A(i)} t_j \ge \text{ALG} t_{j^*}$ for all M_i
- $\sum_{i=1}^{m} \sum_{j \in A(i)} t_j \ge mALG (m-1)t_{j^*} \longrightarrow ALG \le (2 \frac{1}{m})OPT$

Worst case of list scheduling

m machines, first m(m-1) jobs have length 1, last job has length m \rightarrow list scheduling algorithm outputs a (2-1/m)-approximation solution

Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that $t_1 \ge t_2 \ge \cdots \ge t_n$; for $i \leftarrow 1, 2, \dots, n$ do

for $j \leftarrow 1, 2, \dots, n$ do

Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that $t_1 \ge t_2 \ge \cdots \ge t_n$; for $i \leftarrow 1, 2, \dots, n$ do

for
$$j \leftarrow 1, 2, \dots, n$$
 do

Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that $t_1 \geq t_2 \geq \cdots \geq t_n$;

for
$$j \leftarrow 1, 2, \dots, n$$
 do

Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that $t_1 \geq t_2 \geq \cdots \geq t_n$;

for
$$j \leftarrow 1, 2, \dots, n$$
 do

Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that $t_1 \geq t_2 \geq \cdots \geq t_n$;

for
$$j \leftarrow 1, 2, \dots, n$$
 do

Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that $t_1 \geq t_2 \geq \cdots \geq t_n$;

for
$$j \leftarrow 1, 2, \dots, n$$
 do

Approximation ratio of LPT

Theorem

LPT algorithm is a 1.5-approximation

Proof W.L.O.G. $|A(i^*)| \geq 2$ otherwise $ext{OPT} = ext{ALG} = t_1$

- OPT $\geq \frac{1}{m} \sum_{j=1}^{n} t_j = \frac{1}{m} \sum_{i=1}^{m} \sum_{j \in A(i)}^{m} t_j \geq ALG t_{j*}$
- $\mathrm{OPT} \geq t_m + t_{m+1} \geq 2t_{j^*}$ because $\exists \mathsf{machine} \ \mathsf{gets} \ \mathsf{two} \ \mathsf{jobs} \ \mathsf{from} \ 1, 2, \ldots, m+1$
- ALG = $(ALG t_{j^*}) + t_{j^*} \le OPT + \frac{1}{2}OPT = 1.5 \cdot OPT$

Approximation ratio of LPT (improved)

Theorem

LPT algorithm is a 4/3-approximation

Proof W.L.O.G. $|A(i^*)| \geq 2$ otherwise OPT = ALG = t_1

- If $t_{j^*} \leq \text{OPT}/3$, then $\text{ALG} = (\text{ALG} t_{j^*}) + t_{j^*} \leq \frac{4}{3} \cdot \text{OPT}$
- If $t_{j^*} > \mathrm{OPT}$, opt. sol assigns ≤ 2 jobs from $1, 2, \ldots, j^*$ on every machine

$$\longrightarrow$$
 ALG = $t_{2m+1-j^*} + t_{j^*} = \text{OPT}$

Outline

- Approximation algorithm
- 2 Load balancing problem
- Vertex Cover
- Traveling Salesman Problem

Weighted Vertex Cover Problem

Problem

- Input: Undirected graph G = (V, E) with cost $c \colon V \to \mathbb{R}_+$
- Goal: find a minimum weight vertex cover

 $S\subseteq V$ is a vertex cover if each edge is incident to at least one vertex in S

This problem is **NP**-hard even when $c_v = 1 \ (\forall v \in V)$

Example

Weighted Vertex Cover Problem

Problem

- Input: Undirected graph G=(V,E) with cost $c\colon V\to \mathbb{R}_+$
- Goal: find a minimum weight vertex cover

 $S\subseteq V$ is a vertex cover if each edge is incident to at least one vertex in S

This problem is **NP**-hard even when $c_v = 1 \ (\forall v \in V)$

Example

 $\mathsf{weight} = 13$

LP relaxation

(Integral) Vertex cover

$$\min \quad \sum_{v \in V} c_v x_v \quad \text{s.t.} \quad x_u + x_v \ge 1 \ (\forall \{u, v\} \in E), \quad x_v \in \{0, 1\} \ (\forall v \in V)$$

Relaxed vertex cover

$$\min \quad \sum_{v \in V} c_v x_v \quad \text{s.t.} \quad x_u + x_v \ge 1 \ (\forall \{u, v\} \in E), \quad x_v \in [0, 1] \ (\forall v \in V)$$

Observations

- $OPT^{int} \ge OPT^{relax}$
- Relaxed vertex cover can be solved in polynomial time (ellipsoid algorithm or interior point algorithm for LP)

LP rounding algorithm

Relaxed vertex cover

$$\min \quad \sum_{v \in V} c_v x_v \quad \text{s.t.} \quad x_u + x_v \ge 1 \ (\forall \{u, v\} \in E), \quad x_v \in [0, 1] \ (\forall v \in V)$$

Algorithm

- 1 Solve the relaxed vertex cover and let x^* be the optimal solution;
- 2 Return $S = \{v \in V \mid x_v^* \ge 1/2\};$

Theorem

The LP rounding algorithm is a 2-approximation

- Feasibility: $\forall \{u, v\} \in E$, $x_u^* \ge 1/2$ or $x_v^* \ge 1/2 \longrightarrow \{u, v\}$ is covered
- Approx. ratio: $\sum_{v \in S} w_v \le 2 \cdot \sum_{v \in V} c_v x_v^* = 2 \cdot \mathrm{OPT}^{\mathsf{relax}} \le 2 \cdot \mathrm{OPT}^{\mathsf{int}}$

LP rounding algorithm

Relaxed vertex cover

$$\min \quad \sum_{v \in V} c_v x_v \quad \text{s.t.} \quad x_u + x_v \ge 1 \ (\forall \{u, v\} \in E), \quad x_v \in [0, 1] \ (\forall v \in V)$$

Algorithm

- 1 Solve the relaxed vertex cover and let x^* be the optimal solution;
- 2 Return $S = \{v \in V \mid x_v^* \ge 1/2\};$

Theorem

The LP rounding algorithm is a 2-approximation

- Feasibility: $\forall \{u, v\} \in E$, $x_u^* \ge 1/2$ or $x_v^* \ge 1/2 \longrightarrow \{u, v\}$ is covered
- Approx. ratio: $\sum_{v \in S} w_v \le 2 \cdot \sum_{v \in V} c_v x_v^* = 2 \cdot \mathrm{OPT}^{\mathsf{relax}} \le 2 \cdot \mathrm{OPT}^{\mathsf{int}}$

$$ot \exists (2-\epsilon) \text{-approx}. \text{ alg. if the unique game conjecture is true} \ [\text{Khot and Regev 2008}]$$

a complexity assumption stronger than $P \neq NP$

Compute the output of the LP rounding algorithm

LP rounding weight = ???

Outline

- Approximation algorithm
- 2 Load balancing problem
- Vertex Cover
- 4 Traveling Salesman Problem

Traveling Salesman Problem

Problem

- Input: Complete undirected graph G=(V,E) with distance $d\colon E\to \mathbb{R}_+$
- Goal: find a shortest cycle that visits all vertices exactly once

Example

Traveling Salesman Problem

Problem

- Input: Complete undirected graph G=(V,E) with distance $d\colon E\to \mathbb{R}_+$
- Goal: find a shortest cycle that visits all vertices exactly once

Example

 $\mathsf{length} = 11$

Inapproximability

Theorem

Unless $\mathbf{P} = \mathbf{NP}$, there is no α -approximation algorithm for any $\alpha \geq 1$

• From a Hamiltonian-cycle instance G = (V, E), construct

$$d(u,v) = \begin{cases} 1 & \text{if } \{u,v\} \in E \\ \alpha |V| + 1 & \text{if } \{u,v\} \not \in E \end{cases}$$

 $\bullet \ \mathrm{OPT} = |\mathit{V}| \ \mathrm{if} \ \mathrm{"yes"} \ \mathrm{and} \ \mathrm{OPT} \geq \alpha |\mathit{V}| + 1 \ \mathrm{if} \ \mathrm{"no"}$

Metric Traveling Salesman Problem

Problem

- Input: Complete undirected graph G=(V,E) with distance $d\colon E\to \mathbb{R}_+$ where $d(u,w)\leq d(u,v)+d(v,w)$ for every $u,v,w\in V$
- Goal: find a shortest cycle that visits all vertices exactly once

Example

Hardness of metric TSP

Theorem

Metric TSP is NP-hard

• From a Hamiltonian-cycle instance G = (V, E), construct

$$d(u,v) = \begin{cases} 1 & \text{if } \{u,v\} \in E \\ 2 & \text{if } \{u,v\} \not\in E \end{cases}$$

 $\bullet \ \mathrm{OPT} = |\mathit{V}| \ \mathrm{if} \ \mathrm{"yes"} \ \mathrm{and} \ \mathrm{OPT} \geq |\mathit{V}| + 1 \ \mathrm{if} \ \mathrm{"no"}$

Simple 2-approximation algorithm

- 1 Find a minimum spanning tree T;
- 2 Double each edge in T (making Eulerian graph);
- 3 Find an Eulerian tour W on this graph (by DFS);
- 4 Delete all duplicates in W by keeping the first visit to each vertex u;

Theorem

The above algorithm is 2-approximation

$$\therefore$$
 ALG $\leq 2d(T) \leq 2$ OPT

Christofides algorithm [Christofides 1976]

- 1 Find a minimum spanning tree T;
- 2 Compute a minimum weight perfect matching M in the complete graph over the odd-degree vertices in T;
- **3** Find an Eulerian tour W on $T \stackrel{\cdot}{\cup} M$;
- 4 Delete all duplicates in W by keeping the first visit to each vertex u;

Theorem

The above algorithm is 1.5-approximation

$$\therefore$$
 ALG $\leq d(T) + d(M) \leq OPT + 0.5OPT = 1.5OPT$

metric TSP

Can we improve Christofides algorithm?

Theorem [Karlin, Klein, and Gharan 2020]

 $\exists (1.5-\epsilon)$ -approx. randomized algorithm for metric TSP for some $\epsilon>10^{-36}$

Theorem [Karlin, Klein, and Gharan 2022/12/13]

 $\exists (1.5-\epsilon)$ -approx. deterministic algorithm for metric TSP for some $\epsilon>10^{-36}$

Theorem [Karpinski, Lampis, and Schmied 2015]

 $\not\exists$ 123/122-approximation algorithm for metric TSP unless $\mathbf{P} = \mathbf{NP}$