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Schedule

Lec. # Date Topics
1 10/4 Introduction, Stable matching
2 10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)
3 10/18 Greedy Algorithms (2/2)
4 10/25 Divide and Conquer (1/2)
5 11/1 Divide and Conquer (2/2)
6 11/8 Dynamic Programming (1/2)
7 11/15 Dynamic Programming (2/2)

— 11/22 Thursday Classes
8 11/29 Network Flow (1/2)
9 12/6 Network Flow (2/2)

10 12/13 NP and Computational Intractability
11 12/20 Approximation Algorithms (1/2)
12 12/27 Approximation Algorithms (2/2)
13 1/10 Randomized Algorithms
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Outline

1 Approximation algorithm

2 Load balancing problem

3 Vertex Cover

4 Traveling Salesman Problem
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Coping with NP-hardness

What can we do for an NP-hard problem

• Exponential time algorithms
• Heuristic algorithms
• Approximation algorithms
• FPT (fixed parameter tractable) algorithms
• Parallelism
• Randomization
• Quantum computation
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Approximation algorithm

Definition
For a maximization problem “max f (x) s.t. x ∈ X”,
a solution x∗ ∈ X is an α-approximation solution if f (x∗) ≥ α

0 ≤ α ≤ 1

·OPT

Definition
For a minimization problem “min f (x) s.t. x ∈ X”,
a solution x∗ ∈ X is an α-approximation solution if f (x∗) ≤ α

α ≥ 1

·OPT

Definition
An α-approximation algorithm is a polynomial-time algorithm that finds
an α-approximation solution for any instance
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Load balancing
Problem
• Input: m identical machines, n jobs; job j has processing time tj

• Goal: find an assignment
partition (A(1), . . . ,A(m))

that minimizes makespan
maxi

∑
j∈A(i) tj

Example

M1 M2 M3

time
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Hardness of Load balancing

Theorem
Load balancing problem is NP-hard even if m = 2

Proof: PARTITION ≤P Load-Balance

PARTITION Problem
Given a1, a2, . . . , an ∈ Z+, is there I ⊆ [n] such that

∑
i∈I ai =

∑
i 6∈I ai?
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List scheduling algorithm

Algorithm

1 for j ← 1, 2, . . . ,n do
2 assign job j to a machine i that has smallest load;

Example

1 2 3 4 5 M1 M2 M3

time
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Approximation ratio of list scheduling
Theorem
List scheduling algorithm is a (2− 1/m)-approximation

Proof
• OPT ≥ 1

m
∑n

j=1 tj and OPT ≥ maxn
j=1 tj ≥ tj∗

•
∑

j∈A(i∗) tj = ALG and
∑

j∈A(i) tj ≥ ALG− tj∗ for all Mi

•
∑m

i=1
∑

j∈A(i) tj

mOPT ≥

≥ mALG− (m − 1)tj∗

≤ OPT

ALG ≤ (2− 1
m )OPT

M1 · · · Mi∗ · · · Mm

ALG

ALG− tj∗

j∗ the last job assigned to Mi∗

bottleneck machine
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Worst case of list scheduling

m machines, first m(m − 1) jobs have length 1, last job has length m
list scheduling algorithm outputs a (2− 1/m)-approximation solution

M1 M2 · · ·

· · ·

Mm

time

ALG = (m − 1) + m
M1 M2 · · ·

· · ·

Mm

time

OPT = m
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Improved algorithm
Longest Processing Time (LPT) algorithm

1 Sort jobs and relabel so that t1 ≥ t2 ≥ · · · ≥ tn;
2 for j ← 1, 2, . . . ,n do
3 assign job j to a machine i that has smallest load;

Example

1 2 3 4 5 M1 M2 M3

time
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Approximation ratio of LPT
Theorem
LPT algorithm is a 1.5-approximation

Proof W.L.O.G. |A(i∗)| ≥ 2 otherwise OPT = ALG = t1

• OPT ≥ 1
m
∑n

j=1 tj =
1
m
∑m

i=1
∑

j∈A(i) tj ≥ ALG− tj∗

• OPT ≥ tm + tm+1 ≥ 2tj∗ because ∃machine gets two jobs from 1, 2, . . . ,m + 1

• ALG = (ALG− tj∗) + tj∗ ≤ OPT + 1
2OPT = 1.5 ·OPT

M1 · · · Mi∗ · · · Mm

ALG

ALG− tj∗
j∗ the last job assigned to Mi∗

bottleneck machine

Yasushi Kawase Advanced Core in Algorithm Design 13 / 27



Approximation ratio of LPT (improved)
Theorem
LPT algorithm is a 4/3-approximation

Proof W.L.O.G. |A(i∗)| ≥ 2 otherwise OPT = ALG = t1

• If tj∗ ≤ OPT/3, then ALG = (ALG− tj∗) + tj∗ ≤ 4
3 ·OPT

• If tj∗ > OPT, opt. sol assigns ≤ 2 jobs from 1, 2, . . . , j∗ on every machine

ALG = t2m+1−j∗ + tj∗ = OPT

M1 · · · Mi∗ · · · Mm

ALG

ALG− tj∗
j∗ the last job assigned to Mi∗

bottleneck machine
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Weighted Vertex Cover Problem
Problem
• Input: Undirected graph G = (V ,E) with cost c : V → R+

• Goal: find a minimum weight vertex cover
S ⊆ V is a vertex cover if each edge is incident to at least one vertex in S

This problem is NP-hard even when cv = 1 (∀v ∈ V )

Example

5

5

1

1

5

4

1
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Weighted Vertex Cover Problem
Problem
• Input: Undirected graph G = (V ,E) with cost c : V → R+
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S ⊆ V is a vertex cover if each edge is incident to at least one vertex in S

This problem is NP-hard even when cv = 1 (∀v ∈ V )

Example

5

5

1

1

5

4

1

weight = 13
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LP relaxation

(Integral) Vertex cover
min

∑
v∈V cvxv s.t. xu + xv ≥ 1 (∀{u, v} ∈ E), xv ∈ {0, 1} (∀v ∈ V )

Relaxed vertex cover
min

∑
v∈V cvxv s.t. xu + xv ≥ 1 (∀{u, v} ∈ E), xv ∈ [0, 1] (∀v ∈ V )

Observations
• OPTint ≥ OPTrelax

• Relaxed vertex cover can be solved in polynomial time
(ellipsoid algorithm or interior point algorithm for LP)
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LP rounding algorithm
Relaxed vertex cover
min

∑
v∈V cvxv s.t. xu + xv ≥ 1 (∀{u, v} ∈ E), xv ∈ [0, 1] (∀v ∈ V )

Algorithm
1 Solve the relaxed vertex cover and let x∗ be the optimal solution;
2 Return S = {v ∈ V | x∗

v ≥ 1/2};

Theorem
The LP rounding algorithm is a 2-approximation

• Feasibility: ∀{u, v} ∈ E , x∗
u ≥ 1/2 or x∗

v ≥ 1/2 {u, v} is covered
• Approx. ratio:

∑
v∈S wv ≤ 2 ·

∑
v∈V cvx∗

v = 2 ·OPTrelax ≤ 2 ·OPTint

6 ∃(2− ε)-approx. alg. if the unique game conjecture is true
a complexity assumption stronger than P 6= NP

[Khot and Regev 2008]
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Quiz
Compute the output of the LP rounding algorithm

OPT weight = 13

5

5

1

1

5

4

1

LP rounding weight = ???

5

5

1

1

5

4

1
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Traveling Salesman Problem
Problem
• Input: Complete undirected graph G = (V ,E) with distance d : E → R+

• Goal: find a shortest cycle that visits all vertices exactly once

Example

3

1

3

4
2

4

Yasushi Kawase Advanced Core in Algorithm Design 21 / 27



Traveling Salesman Problem
Problem
• Input: Complete undirected graph G = (V ,E) with distance d : E → R+

• Goal: find a shortest cycle that visits all vertices exactly once

Example

3

1

3

4
2

4 length = 11
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Inapproximability
Theorem
Unless P = NP, there is no α-approximation algorithm for any α ≥ 1

• From a Hamiltonian-cycle
NP-complete

instance G = (V ,E), construct

d(u, v) =

{
1 if {u, v} ∈ E
α|V |+ 1 if {u, v} 6∈ E

• OPT = |V | if “yes” and OPT ≥ α|V |+ 1 if “no”

1

1

1

4α+ 1

1

4α+ 1
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Metric Traveling Salesman Problem
Problem
• Input: Complete undirected graph G = (V ,E) with distance d : E → R+

where d(u,w) ≤ d(u, v) + d(v,w) for every u, v,w ∈ V

• Goal: find a shortest cycle that visits all vertices exactly once

Example

3

1

3

4
2

4

Metric
4

1

3

4
2

4

Not metric
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Hardness of metric TSP
Theorem
Metric TSP is NP-hard

• From a Hamiltonian-cycle
NP-complete

instance G = (V ,E), construct

d(u, v) =

{
1 if {u, v} ∈ E
2 if {u, v} 6∈ E

• OPT = |V | if “yes” and OPT ≥ |V |+ 1 if “no”

1

1

1

2
1

2
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Simple 2-approximation algorithm

1 Find a minimum spanning tree T ;
2 Double each edge in T (making Eulerian graph);
3 Find an Eulerian tour W on this graph (by DFS);
4 Delete all duplicates in W by keeping the first visit to each vertex u;

Theorem
The above algorithm is 2-approximation

∵ ALG ≤ 2d(T) ≤ 2OPT

a b

c
d

e

f

a b

c
d

e

f

a b

c
d

e

f
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Christofides algorithm [Christofides 1976]

1 Find a minimum spanning tree T ;
2 Compute a minimum weight perfect matching M in the complete

graph over the odd-degree vertices in T ;
3 Find an Eulerian tour W on T

·
∪M ;

4 Delete all duplicates in W by keeping the first visit to each vertex u;

Theorem
The above algorithm is 1.5-approximation

∵ ALG ≤ d(T) + d(M ) ≤ OPT + 0.5OPT = 1.5OPT

a b

c
d

e

f

a b

c
d

e

f

a b

c
d

e

f
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metric TSP

Can we improve Christofides algorithm?

Theorem [Karlin, Klein, and Gharan 2020]

∃(1.5− ε)-approx. randomized algorithm for metric TSP for some ε > 10−36

Theorem [Karlin, Klein, and Gharan 2022/12/13]

∃(1.5− ε)-approx. deterministic algorithm for metric TSP for some ε > 10−36

Theorem [Karpinski, Lampis, and Schmied 2015]

6 ∃ 123/122-approximation algorithm for metric TSP unless P = NP
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