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11/15
11/22
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12/20
12/27
1/10

Introduction, Stable matching
Basics of Algorithm Analysis, Greedy Algorithms (1/2)
Greedy Algorithms (2/2)

Divide and Conquer (1/2)

Divide and Conquer (2/2)

Dynamic Programming (1/2)
Dynamic Programming (2/2)
Thursday Classes

Network Flow (1/2)

Network Flow (2/2)

NP and Computational Intractability
Approximation Algorithms (1/2)
Approximation Algorithms (2/2)
Randomized Algorithms
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Problem, Algorithm, Running time

e A computational problem can be viewed as
amap f: I — S from the set of instances to the set of solutions
1 S

Primality testing I =N, S = {yes,no}, f(1) =no, f(2) =yes, f(3) =yes, f(4) =no,...

e An algorithm for computing f is a set of rules such that
by following them we can compute f(z) given any input z € [

e An algorithm for computing f is said to be T'(n)-time if
it outputs f(z) in at most T'(|z|) steps for any z € I
length of z
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Polynomial-time algorithms

Definition {p(n) = O(n®) for some ¢ > O]

Polynomial-time algorithm is p(n)-time algorithm for some polynomial p

“Efficient” algorithm <= polynomial-time algorithm

Example: max-flow (G = (V, E),s,t,c: E — Zy)
e size of an instance is O(| V| + |E| 4+ >_ . plog c(e))
e Ford-Fulkerson: O(|E| ) . c(e)) time == not polynomial-time
e Capacity scaling: O(|E|? log max.c g c(e)) time == (weakly) polynomial-time

e Edmonds—Karp: O(|EJ?|V|) time == (strongly) polynomial-time
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Classify problems

we want to classify tractable problems

Definitoin

A problem is polynomial-time solvable if Ipolynomial-time alg. for it

Poynlmial-time solvable Probably not
e shortest path e longest path
e min cut e max cut

bipartite matching 3-dimensional matching

linear programming integer linear programming

primality testing factoring
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Polynomial-time reductions

Definition
Problem X is polynomial-time reducible to problem Y (X <p Y) if

arbitrary instances of problem X can be solved using:

e polynomial number of standard computational steps

e polynomial number of calls to oracle that solves problem Y

Example Bipartite matching <p Max-flow

Observations

e X <p Y and Y is solvable in poly-time = X is solvable in poly-time
e X <p Y and X is not solvable in poly-time = Y is not solvable in poly-time

e X<pYand Y <p Z= X <p Z (transitivity)
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Decision problem

Definition: Decision problem

e a problem where the answer for every instance is either yes or no

e can be represented as a map from {0, 1}* to {0,1}

e simple encodings can be used to represent general objects

integers, pairs of integers, graphs, vectors, matrices,...

o Ly = {z | f(x) =1} C{0,1}* is called language

Example: primality testing (determining whether an input number p is prime)

e f(x) = 1iff x is a representation of a prime

e f(1)=0, f(11) =1, f(101) =1
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Uncomputable decision problem

Theorem
3 decision problem that is not computable by any algorithm

e The number of decision problems is uncountable

e The number of algorithm is countable
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P and NP

Definition: class P
The set of decision problems for which Jpoly-time algorithm

Definition: class NP
The set of decision problems f for which J¢g such that

e ¢ is computable by a polynomial-time algorithm
e pis a polynomial

o f(#) =1 < Fw, |w] <p(|z]) and g(z,w) =1

e P stands for Polynomial-time
e NP stands for Non-deterministic Polynomial-time

e Observation: P C NP
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P vs NP

Conjecture
P £NP

e Most computer scientists believe that P # NP

e $1,000,000 for resolution of P vs NP problem (millennium prize)
https://www.claymath.org/millennium-problems/p-vs-np-problem

Yang—Mills and Mass Gap

Riemann Hypothesis

P vs NP Problem

Navier-Stokes Equation

Hodge Conjecture

Poincaré Conjecture =9 solved by Grigori Perelman
Birch and Swinnerton-Dyer Conjecture

NookrownH
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Problems in NP (1/4)

Satisfiability problem (SAT)
Given a CNF formula @, does it have a satisfying truth assignment?

3-SAT

SAT where each clause contains exactly 3 literals
e boolean variables: zj,...,z,
e literal: x1,..., 20,21, ..., Ty

e clause: a disjunction of literals, e.g., C; =z V23 V 13
e conjunctive normal form : conjunction of clauses, e.g., ® = C; A Co A Cs
CNF
Examples

e b= (TVmVa)A(@mVEVa)A @V 12V i) = Yes
o &= (1 Vap)A(z VIR) ATV an) A (T VE) —» No
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Problems in NP (2/4)

Independent set problem (IS)

Given a graph G = (V, E) and an integer £, is there S C V such that
|S| > k and no two vertices in S are adjacent?

Example
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Problems in NP (3/4)

Vertex cover (VQ)

Given a graph G = (V, E) and an integer £, is there C' C V such that
|C| < k and each edge is incident to at least one vertex in C?

Example
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Problems in NP (4/4)

Set cover problem (Set-Cover)

Given a set U of elements, 51, 5s,..., 5, C U, an integer k, is there
J C{1,2,...,m} such that |I| <k and U, S; = U?

Example
e U=1{1,2,3,4}
e 51 ={1,3}
o S5 ={1,2}
o 53 ={2,3,4}
e k=2
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NP-complete

Definition
e A problem X is NP-hard if ¥ <p X for every Y € NP
e A problem X is NP-complete if it is NP-hard and in NP

Proposition
e If X is NP-hard and X <p Y, then Y is also NP-hard

e If X is NP-complete and X <p Y € NP, then Y is also NP-complete
e If X is NP-complete, then X € P iff P = NP

Q: are there any “natural” NP-complete problems?
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The first NP-complete problem

Cook—Levin Theorem
SAT is NP-complete

PI’OOf Sketch formal proof requires nondeterministic Turing machine

e We show X <p SAT for any X € NP
e Let g be a certificate of X
e g is computable by a polynomial-time algorithm
e f(z) =1 < 3w, |w| <p(|z]), 9(z,w) =1
e We construct a CNF that “simulates” the algorithm
e the algorithm for ¢ runs in poly-space and poly-step

e make a boolean variable for every pair of place and step
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SAT reduces to 3-SAT

Theorem
SAT <p 3-SAT, and hence 3-SAT is NP-complete

Proof
e Transform each clause individually
e OC=0— (UVNaV)ANUVAVR)ANENVTV 2)ANUNVZV )
o C=0 Vil —» ({1 VL V)N VI VZ)
o =01Vl =P (1 VIV
e C=U VLV -V (k>3)
—> ((1VV2)AU3VZIV 2) AN TV 23) A - - A(Lr—aVZ—aV 2k—3) AN(Lk—1 VLN Z—3)

e The reduction preserves satisfiability
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3-SAT reduces to Independent set problem

Theorem
3-SAT <p IS, and hence IS is NP-complete

Proof
e Given a 3-SAT instance ®, we construct an IS instance (G, k) as follows
e Each clause —» triangle (3 vertices and 3 edges)
e Connect literal to each of its negations
o k=]
e @ is satisfiable <= G has an independent set of size k

Example &= (ZVaVa)A(@ VTV a)A(@TLV Vi)
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Vertext cover problem

Theorem
IS <p VC, and hence VC is NP-complete

Proof

e Observation: S is an independent set <= V' \ S is a vertex cover

e (G,k) is a yes-instance of IS <— (G, |V|— k) is a yes-instance of VC

vertex cover

independent set
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Set cover problem

Theorem
VC <p Set-Cover, and hence Set-Cover is NP-complete

Proof
e Given a VC instance (G, k), we construct (U, S, k') as follows

e U=FE, K=k
e Foreachve V, S, ={e € E| eincident to v}

e G has a vertex cover of size k <= (U, S) has a set cover of size k

€5
@_ﬁ o U=1{1,234,567,8,9,10}

® S, = {172 3,4}, Sy = {175}1 Se = {276}'

Q< @ @ Sd:{7,8},se:{3,5,7,9},

ZHL R S; = {4,6,8,10}, Sy = {9, 10}
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Basic NP-complete problems

0-1 Integer
Programming

Directed
Hamilton
Cycle
3-dimensional
matching
Y
Y Hamilton
Cycl
Set-Cover e Subset-Sum
TSP

Knapsack
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Other Basic Complexity Classes

PSPACE

e P C NP C PSPACE C EXP
o P # EXP
e cf. https://complexityzoo.net/Complexity_Zoo (546 classes)
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Quiz

Which puzzles are known to be NP-hard?

5/3/4(6|7|8]|9]|1]|2
6/7/2|1|9|5(3/4(8
19/8[3|4]2]|5|6|7
8 5/9|7|6/1[4|2]|3 ~
412(6|8[53|7/9]1 I
7/1/3]|9]/2/4[8]|5]|6
916 1]53]7]|2|8/4
2/8/7]|4|1]|9|6|3|5
3/4/5(2|8|6]1]7|9
n? x n? sudoku n x n lights out
(solvability) (optimal solution)
1 4
3 L—25s
L—3 1
—5
'__J
1
2 44—
numberlink n X n X n Rubik's cube
(solvability) (optimal solution)
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