
Advanced Core in Algorithm Design #10
算法設計要論 第 10回

Yasushi Kawase
河瀬 康志

Dec. 13th, 2022
last update: 12:51pm, December 13, 2022

Yasushi Kawase Advanced Core in Algorithm Design 1 / 26

Schedule

Lec. # Date Topics
1 10/4 Introduction, Stable matching
2 10/11 Basics of Algorithm Analysis, Greedy Algorithms (1/2)
3 10/18 Greedy Algorithms (2/2)
4 10/25 Divide and Conquer (1/2)
5 11/1 Divide and Conquer (2/2)
6 11/8 Dynamic Programming (1/2)
7 11/15 Dynamic Programming (2/2)

— 11/22 Thursday Classes
8 11/29 Network Flow (1/2)
9 12/6 Network Flow (2/2)

10 12/13 NP and Computational Intractability
11 12/20 Approximation Algorithms (1/2)
12 12/27 Approximation Algorithms (2/2)
13 1/10 Randomized Algorithms

Yasushi Kawase Advanced Core in Algorithm Design 2 / 26

Outline

1 Polynomial-Time Reductions

2 P vs NP

3 NP-completeness

Yasushi Kawase Advanced Core in Algorithm Design 3 / 26

Problem, Algorithm, Running time

• A computational problem can be viewed as
a map f : I → S from the set of instances

I
to the set of solutions

S

Primality testing I = N, S = {yes, no}, f (1) = no, f (2) = yes, f (3) = yes, f (4) = no, . . .

• An algorithm for computing f is a set of rules such that
by following them we can compute f (x) given any input x ∈ I

• An algorithm for computing f is said to be T(n)-time if
it outputs f (x) in at most T(|x

length of x

|) steps for any x ∈ I

Yasushi Kawase Advanced Core in Algorithm Design 4 / 26

Polynomial-time algorithms
Definition
Polynomial-time algorithm is p(n)-time algorithm for some polynomial p

p(n) = O(nc) for some c > 0

“Efficient” algorithm ⇐⇒ polynomial-time algorithm

Example: max-flow (G = (V ,E), s, t, c : E → Z++)

• size of an instance is O(|V |+ |E |+
∑

e∈E log c(e))

• Ford–Fulkerson: O(|E |
∑

e∈E c(e)) time not polynomial-time

• Capacity scaling: O(|E |2 logmaxe∈E c(e)) time (weakly) polynomial-time

• Edmonds–Karp: O(|E |2|V |) time (strongly) polynomial-time

Yasushi Kawase Advanced Core in Algorithm Design 5 / 26

Classify problems

we want to classify tractable problems

Definitoin
A problem is polynomial-time solvable if ∃polynomial-time alg. for it

Poynlmial-time solvable
• shortest path
• min cut
• bipartite matching
• linear programming
• primality testing

Probably not
• longest path
• max cut
• 3-dimensional matching
• integer linear programming
• factoring

Yasushi Kawase Advanced Core in Algorithm Design 6 / 26

Polynomial-time reductions

Definition
Problem X is polynomial-time reducible to problem Y (X ≤P Y) if

arbitrary instances of problem X can be solved using:
• polynomial number of standard computational steps
• polynomial number of calls to oracle that solves problem Y

Example Bipartite matching ≤P Max-flow

Observations
• X ≤P Y and Y is solvable in poly-time =⇒ X is solvable in poly-time

• X ≤P Y and X is not solvable in poly-time =⇒ Y is not solvable in poly-time

• X ≤P Y and Y ≤P Z =⇒ X ≤P Z (transitivity)

Yasushi Kawase Advanced Core in Algorithm Design 7 / 26

Outline

1 Polynomial-Time Reductions

2 P vs NP

3 NP-completeness

Yasushi Kawase Advanced Core in Algorithm Design 8 / 26

Decision problem
Definition: Decision problem

• a problem where the answer for every instance is either yes or no
• can be represented as a map from {0, 1}∗⋃

n≥0{0, 1}n

to {0
no

, 1
yes
}

• simple encodings can be used to represent general objects
integers, pairs of integers, graphs, vectors, matrices,...

• Lf = {x | f (x) = 1} ⊆ {0, 1}∗ is called language

Example: primality testing (determining whether an input number p is prime)

• f (x) = 1 iff x is a representation of a prime
• f (1) = 0, f (11) = 1, f (101) = 1

Yasushi Kawase Advanced Core in Algorithm Design 9 / 26

Uncomputable decision problem

Theorem
∃ decision problem that is not computable by any algorithm

• The number of decision problems is uncountable

• The number of algorithm is countable

Yasushi Kawase Advanced Core in Algorithm Design 10 / 26

P and NP

Definition: class P
The set of decision problems for which ∃poly-time algorithm

Definition: class NP
The set of decision problems f for which ∃g such that

• g is computable by a polynomial-time algorithm
• p is a polynomial
• f (x) = 1 ⇐⇒ ∃w

witness

, |w| ≤ p(|x|) and g(x,w) = 1

• P stands for Polynomial-time
• NP stands for Non-deterministic Polynomial-time
• Observation: P ⊆ NP

Yasushi Kawase Advanced Core in Algorithm Design 11 / 26

P vs NP

Conjecture
P 6= NP

• Most computer scientists believe that P 6= NP

• $1,000,000 for resolution of P vs NP problem (millennium prize)
https://www.claymath.org/millennium-problems/p-vs-np-problem

1. Yang–Mills and Mass Gap
2. Riemann Hypothesis
3. P vs NP Problem
4. Navier–Stokes Equation
5. Hodge Conjecture
6. Poincaré Conjecture solved by Grigori Perelman
7. Birch and Swinnerton-Dyer Conjecture

Yasushi Kawase Advanced Core in Algorithm Design 12 / 26

https://www.claymath.org/millennium-problems/p-vs-np-problem

Problems in NP (1/4)

Satisfiability problem (SAT)
Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT
SAT where each clause contains exactly 3 literals

• boolean variables: x1, . . . , xn

• literal: x1, . . . , xn, x1, . . . , xn

• clause: a disjunction of literals, e.g., Cj = x1 ∨ x2 ∨ x3

• conjunctive normal form
CNF

: conjunction of clauses, e.g., Φ = C1 ∧C2 ∧C5

Examples
• Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) Yes
• Φ = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) No

Yasushi Kawase Advanced Core in Algorithm Design 13 / 26

Problems in NP (2/4)

Independent set problem (IS)
Given a graph G = (V ,E) and an integer k, is there S ⊆ V such that
|S | ≥ k and no two vertices in S are adjacent?

Example

k = 4

Yasushi Kawase Advanced Core in Algorithm Design 14 / 26

Problems in NP (3/4)

Vertex cover (VC)
Given a graph G = (V ,E) and an integer k, is there C ⊆ V such that
|C | ≤ k and each edge is incident to at least one vertex in C?

Example

k = 3

Yasushi Kawase Advanced Core in Algorithm Design 15 / 26

Problems in NP (4/4)

Set cover problem (Set-Cover)
Given a set U of elements, S1,S2, . . . ,Sm ⊆ U , an integer k, is there
J ⊆ {1, 2, . . . ,m} such that |I | ≤ k and

⋃
j∈J Sj = U?

Example
• U = {1, 2, 3, 4}

• S1 = {1, 3}

• S2 = {1, 2}

• S3 = {2, 3, 4}

• k = 2

Yasushi Kawase Advanced Core in Algorithm Design 16 / 26

Outline

1 Polynomial-Time Reductions

2 P vs NP

3 NP-completeness

Yasushi Kawase Advanced Core in Algorithm Design 17 / 26

NP-complete

Definition
• A problem X is NP-hard if Y ≤P X for every Y ∈ NP

• A problem X is NP-complete if it is NP-hard and in NP

Proposition
• If X is NP-hard and X ≤P Y , then Y is also NP-hard
• If X is NP-complete and X ≤P Y ∈ NP, then Y is also NP-complete
• If X is NP-complete, then X ∈ P iff P = NP

Q: are there any “natural” NP-complete problems?

Yasushi Kawase Advanced Core in Algorithm Design 18 / 26

The first NP-complete problem

Cook–Levin Theorem
SAT is NP-complete

Proof sketch formal proof requires nondeterministic Turing machine

• We show X ≤P SAT for any X ∈ NP

• Let g be a certificate of X

• g is computable by a polynomial-time algorithm
• f (x) = 1 ⇐⇒ ∃w, |w| ≤ p(|x|), g(x,w) = 1

• We construct a CNF that “simulates” the algorithm
• the algorithm for g runs in poly-space and poly-step
• make a boolean variable for every pair of place and step

Yasushi Kawase Advanced Core in Algorithm Design 19 / 26

SAT reduces to 3-SAT

Theorem
SAT ≤P 3-SAT, and hence 3-SAT is NP-complete

Proof
• Transform each clause individually

• C = ` (` ∨ z1 ∨ z2) ∧ (` ∨ z1 ∨ z2) ∧ (` ∨ z1 ∨ z2) ∧ (` ∨ z1 ∨ z2)

• C = `1 ∨ `2 (`1 ∨ `2 ∨ z) ∧ (`1 ∨ `2 ∨ z)

• C = `1 ∨ `2 ∨ `3 `1 ∨ `2 ∨ `3

• C = `1 ∨ `2 ∨ · · · ∨ `k (k > 3)
(`1∨`2∨z1)∧(`3∨z1∨z2)∧(`4∨z2∨z3)∧· · ·∧(`k−2∨zk−4∨zk−3)∧(`k−1∨`k∨zk−3)

• The reduction preserves satisfiability

Yasushi Kawase Advanced Core in Algorithm Design 20 / 26

3-SAT reduces to Independent set problem

Theorem
3-SAT ≤P IS, and hence IS is NP-complete

Proof
• Given a 3-SAT instance Φ, we construct an IS instance (G, k) as follows

• Each clause triangle (3 vertices and 3 edges)
• Connect literal to each of its negations
• k = |Φ|

• Φ is satisfiable ⇐⇒ G has an independent set of size k

Example Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

x1

x2 x3

x2

x1 x3

x1

x2 x4

k = 3

Yasushi Kawase Advanced Core in Algorithm Design 21 / 26

Vertext cover problem

Theorem
IS ≤P VC, and hence VC is NP-complete

Proof
• Observation: S is an independent set ⇐⇒ V \ S is a vertex cover
• (G, k) is a yes-instance of IS ⇐⇒ (G, |V | − k) is a yes-instance of VC

vertex cover

independent set

Yasushi Kawase Advanced Core in Algorithm Design 22 / 26

Set cover problem

Theorem
VC ≤P Set-Cover, and hence Set-Cover is NP-complete

Proof
• Given a VC instance (G, k), we construct (U ,S , k′) as follows

• U = E , k′ = k

• For each v ∈ V , Sv = {e ∈ E | e incident to v}

• G has a vertex cover of size k ⇐⇒ (U ,S) has a set cover of size k

a

b

c

d

e

f

g

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

• U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• Sa = {1, 2, 3, 4}, Sb = {1, 5}, Sc = {2, 6},
Sd = {7, 8}, Se = {3, 5, 7, 9},
Sf = {4, 6, 8, 10}, Sg = {9, 10}

Yasushi Kawase Advanced Core in Algorithm Design 23 / 26

Basic NP-complete problems

SAT

3-SAT

IS

VC

Set-Cover

0–1 Integer
Programming

Directed
Hamilton
Cycle

Hamilton
Cycle

TSP

3-dimensional
matching

Subset-Sum

Knapsack Partition

Yasushi Kawase Advanced Core in Algorithm Design 24 / 26

Other Basic Complexity Classes

P

NPco-NP

PSPACE

EXP

• P ⊆ NP ⊆ PSPACE ⊆ EXP

• P 6= EXP

• cf. https://complexityzoo.net/Complexity_Zoo (546 classes)

Yasushi Kawase Advanced Core in Algorithm Design 25 / 26

https://complexityzoo.net/Complexity_Zoo

Quiz
Which puzzles are known to be NP-hard?

n2 × n2 sudoku
(solvability)

n × n lights out
(optimal solution)

numberlink
(solvability)

n × n × n Rubik’s cube
(optimal solution)

Yasushi Kawase Advanced Core in Algorithm Design 26 / 26

	Polynomial-Time Reductions
	P vs NP
	NP-completeness

