Advanced Core in Algorithm Design # 1 算法設計要論 第1回

Yasushi Kawase 河瀬 康志

October 4, 2022

last update: 3:18pm, September 24, 2022

Outline

- Introduction
- Stable Matching

Grading

- Midterm report (50%)
- Final report (50%)

日本語 or English

Textbook

Jon Kleinberg and Éva Tardos: Algorithm Design

Schedule

Lec. #	Date	Topics
1	10/4	Introduction, Stable matching
2	10/11	Basics of Algorithm Analysis, Greedy Algorithms $(1/2)$
3	10/18	Greedy Algorithms $(2/2)$
4	10/25	Divide and Conquer $(1/2)$
5	11/1	Divide and Conquer $(2/2)$
6	11/8	Dynamic Programming $(1/2)$
7	11/15	Dynamic Programming (2/2)
_	11/22	Thursday Classes
8	11/29	Network Flow $(1/2)$
9	12/6	Network Flow $(2/2)$
10	12/13	NP and Computational Intractability
11	12/20	Approximation Algorithms $(1/2)$
12	12/27	Approximation Algorithms $(2/2)$
13	1/10	Randomized Algorithms

What is an algorithm?

- a set of rules to solve a particular problem
- stems from al-Khwarizmi
 - c. 780- c. 850
 - a Persian mathematician, astronomer, and geographer
 - In the 12th century, Latin translations of his work on the Indian numerals introduced the decimal number system to the Western world

http://www.muslimheritage.com/topics/

default.cfm?ArticleID=631

Outline

- Introduction
- 2 Stable Matching

Model

- ullet n men and n women
- each man (woman) ranks all the woman (man)
- goal: to find a "stable" matching

Blocking Pair

a matching is unstable if blocking pairs (pairs like the following) exist

Stable matching

a matching without blocking pairs is a stable matching

Question

- Does a stable matching always exist?
- Efficiently computable?

Stable matching

a matching without blocking pairs is a stable matching

Question

- Does a stable matching always exist?
- Efficiently computable?
- YES! By the Gale-Shapley algorithm! [Gale and Shapley 1962]

Gale-Shapley Algorithm

```
1 Initially all m \in M and w \in W are single, and S \leftarrow \emptyset;
 2 while \exists m \in M who is single do
        w \leftarrow the most-preferred woman for m to whom he has not proposed;
 4
        m proposes w;
        if w is single then
 5
        w accepts m (S \leftarrow S \cup \{(m, w)\});
 6
        else if w matches with m' and m \succ_w m' then
 7
            w rejects m' and accepts m (S \leftarrow S \setminus \{(m', w)\} \cup \{(m, w)\});
 8
        else
            w rejects m;
10
11 Return S;
```

cf. https://yambi.jp/stable_matching/index.html

Analysis of the GS algorithm (1/2)

Theorem

The GS algorithm terminates in at most n^2 steps

- Each $m \in M$ proposes to each w at most once
- # of proposals $\leq |M| \times |W| = n^2$

Analysis of the GS algorithm (2/2)

Theorem

The GS algorithm always outputs a stable matching

- Suppose to the contrary that (m, w) is a blocking pair
- ullet Then m must propose to w in the procedure
- ullet w's final partner must be someone more preferable than m
 - contradiction

Applications of the GS algorithm

The GS algorithm (and its extension) is used in real world

Resident matching (US, UK, Japan,...)

- School choice (New York, Boston,...)
- Laboratory assignments at various universities
- UTokyo 進学選択の第二段階
 http://www.c.u-tokyo.ac.jp/zenki/news/kyoumu/firstyear/2016/1125173747.html

Multiple stable matchings

- there may be multiple stable matchings
- any "good" structure?

Operations

For stable matchings S_1 and S_2 ,

- $S_1 \vee S_2$: matching s.t. each man selects better partner in $S_1 \cup S_2$ each woman selects worse partner in $S_1 \cup S_2$
- $S_1 \wedge S_2$: matching s.t. each man selects worse partner in $S_1 \cup S_2$

 $S_1 \triangle S_2$

Structure of stable matchings

Theorem

 $S_1 \vee S_2$ and $S_1 \wedge S_2$ are stable matchings

- → the stable matchings form a (distributive) lattice
- → ∃man-optimal stable matching and woman-optimal stable matching

Output of the GS algorithm

Theorem

The GS algorithm outputs the man-optimal stable matching

regardless of the order in which the proposers are selected

- ullet Let S be the output of GS and S^* be the man-optimal stable matching
- Suppose to the contrary that $S \neq S^*$, i.e., $\exists m$ was rejected by $S^*(m)$
- Let m' be the partner of $w := S^*(m)$ at the first such rejection
- Then $m' \succ_w m$ and $w \succ_{m'} w' \longrightarrow (m', w)$ blocks S^* \longrightarrow contradiction

$$m - w = S^*(m)$$

$$m' - w' = S^*(m')$$

Exercise

Find all the stable matchings

