Advanced Core in Algorithm Design #8 算法設計要論 第8回

Yasushi Kawase 河瀬 康志

Nov. 30th, 2021

last update: 1:09pm, December 10, 2021

Schedule

Lec. #	Date	Topics			
1	10/5	Introduction, Stable matching			
2	10/12	Basics of Algorithm Analysis, Graphs			
3	10/19	Greedy Algorithms $(1/2)$			
4	10/26	Greedy Algorithms $(2/2)$			
5	11/2	Divide and Conquer $(1/2)$			
6	11/9	Divide and Conquer $(2/2)$			
7	11/16	Dynamic Programming $(1/2)$			
8	11/30	Dynamic Programming $(2/2)$			
9	12/7	Network Flow $(1/2)$			
10	12/14	Network Flow $(2/2)$			
11	12/21	NP and Computational Intractability			
12	1/4	Approximation Algorithms $(1/2)$			
13	1/11	Approximation Algorithms $(2/2)$			
14	1/18	Final Examination			

Outline

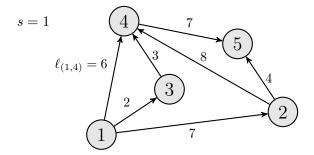
- 1 Shortest path problem (nonnegative lengths)
- Shortest path problem with negative lengths
- All-pairs shortest paths
- Traveling Salesman Problem

Shortest path problem

Problem

- Input: Directed graph G=(V,E), source $s\in V$, length $\ell_e\geq 0\ (e\in E)$
- \bullet Goal: Compute shortest distance and path from s to each $t \in V \setminus \{s\}$

Example

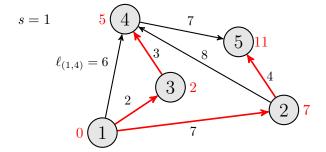


Shortest path problem

Problem

- Input: Directed graph G=(V,E), source $s\in V$, length $\ell_e\geq 0\ (e\in E)$
- \bullet Goal: Compute shortest distance and path from s to each $t \in V \setminus \{s\}$

Example



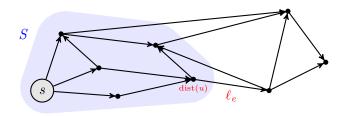
Dijkstra algorithm

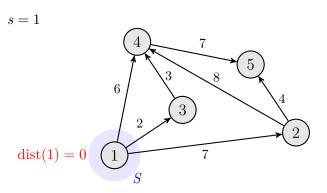
Approach

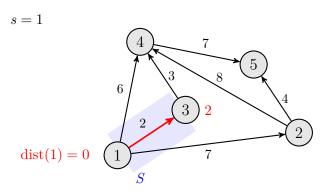
- Initialize $S \leftarrow \{s\}$, $\operatorname{dist}(s) \leftarrow 0$
- Repeatedly choose unexplored node $v \not \in S$ which minimizes

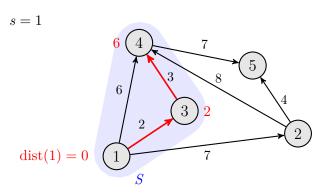
$$\min_{e=(u,v): u \in S} \operatorname{dist}(u) + \ell_e,$$

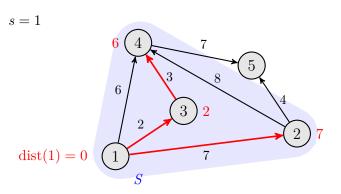
set $\operatorname{dist}(v)$ to be the above value, and $S \leftarrow S \cup \{v\}$

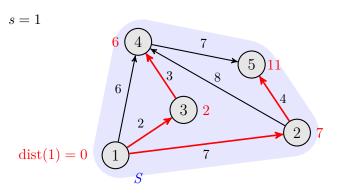








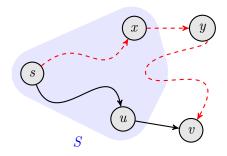




Correctness of Dijkstra algorithm

Induction

- Base case $S = \{s\}$ is clear $(\operatorname{dist}(s) = 0)$
- Inductive step: $\ell(P) \ge \operatorname{dist}(x) + \ell_{(x, y)} \ge \operatorname{dist}(u) + \ell_{(u, v)}$ shortest s-v path first edge in P that leaves S



Efficient implementation

Dijkstra algorithm

```
1 \operatorname{dist}(s) \leftarrow 0, \operatorname{dist}(v) \leftarrow \infty \ (\forall v \neq s);

2 Create an empty priority queue H;

3 foreach v \in V do \operatorname{insert}(H, v, \operatorname{dist}(v));

4 while H is not empty do

5 u \leftarrow \operatorname{deletemin}(H);

6 foreach e = (u, v) \in E do

7 if \operatorname{dist}(v) > \operatorname{dist}(u) + \ell_{(u,v)} then

8 \operatorname{dist}(v) \leftarrow \operatorname{dist}(u) + \ell_{(u,v)};

9 decreasekey(H, v, \operatorname{dist}(v));
```

10 Return dist;

- insert: *n* times
- deletemin: n times
- decreasekey: O(m) times

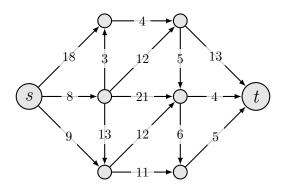
Running time

The running time depends on implementation of priority queue

Implementation	insert	deletemin	decreasekey	Total time
array	O(1)	$\mathrm{O}(n)$	O(1)	$O(n^2)$
binary heap	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(m \log n)$
$\emph{d} ext{-ary heap}$	$O(d \log_d n)$	$O(d \log_d n)$	$O(\log_d n)$	$O((nd+m)\log_d n)$
Fibonacci heap	$\mathrm{O}(1)$ (amortized)	$O(\log n)$	$\mathrm{O}(1)$ (amortized)	$O(m + n \log n)$
	n times	n times	$\mathrm{O}(m)$ times	

- dense graph $(m = \Omega(n^2))$ array implementation is the faster
- sparse graph (m = O(n)) Fibonacci heap implementation is the faster

Compute the shortest distance from \boldsymbol{s} to \boldsymbol{t}



Outline

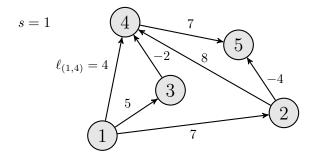
- Shortest path problem (nonnegative lengths)
- 2 Shortest path problem with negative lengths
- All-pairs shortest paths
- Traveling Salesman Problem

Shortest path problem

Problem

- Input: Directed graph G=(V,E), source $s\in V$, length $\ell_e\ (e\in E)$
- ullet Goal: Compute shortest distance and path from s to each $t\in V\setminus \{s\}$

Example

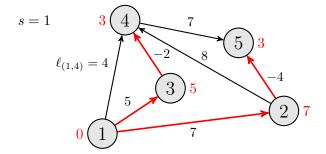


Shortest path problem

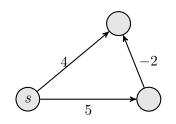
Problem

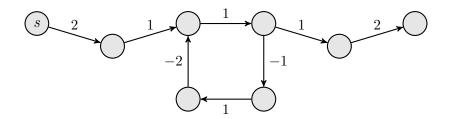
- Input: Directed graph G=(V,E), source $s\in V$, length $\ell_e\ (e\in E)$
- \bullet Goal: Compute shortest distance and path from s to each $t \in V \setminus \{s\}$

Example



Dijkstra algorithm may fail





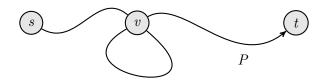
if there exists a negative cycle, then there may not exist a shortest path

No negative cycle case

Observation

If no negative cycles exists, there is a shortest s-t path that is simple

- Let P be the shortest s-t path that uses the fewest edges
- If P contains a directed cycle (whose length is nonnegative),
 it can be removed without increasing the length of P



 \longrightarrow there exists a shortest s-t path that has at most n-1 edges

Dynamic programming (Bellman–Ford algorithm)

OPT(i, v): length of shortest s-v path that uses at most i edges

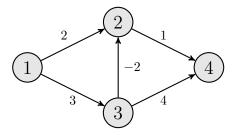
Recursive formula

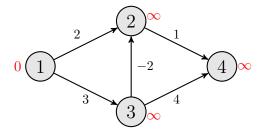
$$\mathrm{OPT}(i,v) = \begin{cases} 0 & \text{if } i = 0 \text{ and } v = s \\ \infty & \text{if } i = 0 \text{ and } v \neq s \\ \min \left\{ \begin{aligned} &\mathrm{OPT}(i-1,v) \\ &\min_{(u,v) \in E} \mathrm{OPT}(i-1,u) + \ell_{(u,v)} \end{aligned} \right\} & \text{if } i > 0 \end{cases}$$

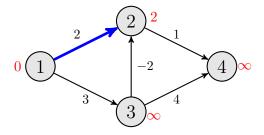
Bellman-Ford

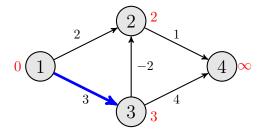
- 1 dist $(s) \leftarrow 0$, dist $(v) \leftarrow \infty \ (\forall v \neq s)$;
- 2 for $i \leftarrow 1, 2, ..., n-1$ do
- $\begin{array}{c|c} \mathbf{3} & \mathbf{foreach} \ e = (u,v) \in E \ \mathbf{do} \\ \mathbf{4} & \operatorname{dist}(v) \leftarrow \min\{\operatorname{dist}(v), \, \operatorname{dist}(u) + \ell_{(u,v)}\}; \end{array}$

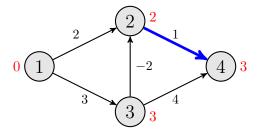
O(mn) subproblems, each one takes O(1) time $\longrightarrow O(mn)$ time

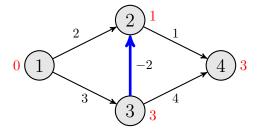


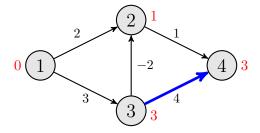


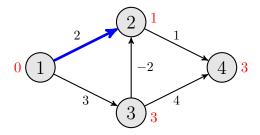


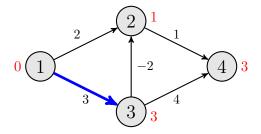


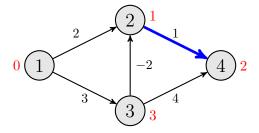


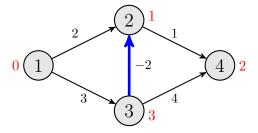


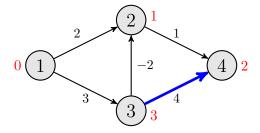


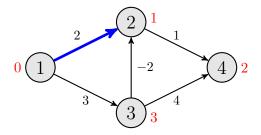


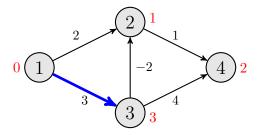


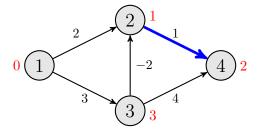




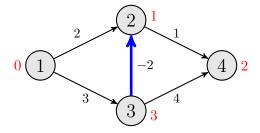




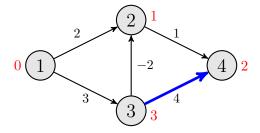




Behavior of Bellman-Ford



Behavior of Bellman-Ford



Detecting a negative cycle

Proposition

 \exists $s ext{-}t$ path that contains a negative cycle $\Rightarrow \lim_{i \to \infty} \mathrm{OPT}(i,t) = -\infty$

Proposition

 $\exists s-t \text{ path that contains a negative cycle for any } t \in V$ $\iff \operatorname{OPT}(n,v) = \operatorname{OPT}(n-1,v) \text{ for any } v \in V$

- (\Rightarrow) because \exists shortest s-v path that has at most n-1 edges
- (\Leftarrow) because $\mathrm{OPT}(n,v) = \mathrm{OPT}(n-1,v) \ (\forall v \in V)$ implies $\lim_{i \to \infty} \mathrm{OPT}(i,v) = \mathrm{OPT}(n-1,v) > -\infty$
- \longrightarrow a negative cycle can be found in O(mn) time

Outline

- Shortest path problem (nonnegative lengths)
- Shortest path problem with negative lengths
- 3 All-pairs shortest paths
- Traveling Salesman Problem

All-pairs shortest paths problem

Problem

- Input: Directed graph G=(V,E) and length ℓ_e $(e\in E)$
- Goal: Compute shortest distance for every pair $(s,t) \in V^2$

```
applicable only when \ell_e \geq 0 \ (\forall e \in E)
```

- Running Dijkstra alg. for every $s \in V \longrightarrow O(mn + n^2 \log n)$ time
- Running Bellman–Ford alg. for every $s \in V \longrightarrow O(mn^2)$ time
- Better alternative: Floyed–Warshall alg. \longrightarrow $O(n^3)$ time

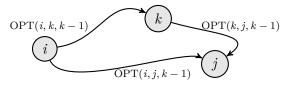
Dynamic programming (Floyd-Warshall algorithm)

- $V = \{1, 2, \dots, n\}$
- OPT(i, j, k): shortest i-j dist. only using vertices in $\{1, 2, \dots, k\}$

Recursive formula

$$\operatorname{OPT}(i,j,k) = \begin{cases} & \operatorname{OPT}(i,j,k-1) \\ \operatorname{OPT}(i,k,k-1) + \operatorname{OPT}(k,j,k-1) \end{cases} & \text{if } k > 0 \\ & \text{of } k = 0 \text{ and } i = j \\ & \text{if } k = 0 \text{ and } (i,j) \in E \\ & \text{otherwise} \end{cases}$$

 $O(n^3)$ subproblems, each one takes O(1) time $\longrightarrow O(n^3)$ time



Implementation of Floyd–Warshall algorithm

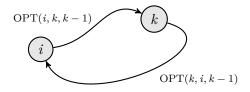
Floyd-Warshall algorithm

```
\begin{array}{lll} \mathbf{1} \ \ \mathbf{for} \ i \leftarrow 1, 2, \dots, n \ \ \mathbf{do} \\ \mathbf{2} & \qquad \qquad \mathbf{for} \ i \leftarrow 1, 2, \dots, n \ \ \mathbf{do} \\ \mathbf{3} & \qquad \qquad \mathbf{if} \ i = j \ \mathbf{then} \ \mathrm{dist}(i,j) \leftarrow 0; \\ \mathbf{4} & \qquad \qquad \mathbf{else} \ \mathbf{if} \ (i,j) \in E \ \mathbf{then} \ \mathrm{dist}(i,j) \leftarrow \ell_{(i,j)}; \\ \mathbf{5} & \qquad \qquad \mathbf{else} \ \mathrm{dist}(i,j) \leftarrow \infty; \\ \mathbf{6} \ \ \mathbf{for} \ k \leftarrow 1, 2, \dots, n \ \ \mathbf{do} \\ \mathbf{7} & \qquad \qquad \mathbf{for} \ i \leftarrow 1, 2, \dots, n \ \ \mathbf{do} \\ \mathbf{8} & \qquad \qquad \mathbf{for} \ j \leftarrow 1, 2, \dots, n \ \ \mathbf{do} \\ \mathbf{9} & \qquad \qquad \mathbf{dist}(i,j) \leftarrow \min\{\mathrm{dist}(i,j), \ \mathrm{dist}(i,k) + \mathrm{dist}(k,j)\}; \end{array}
```

Detecting a negative cycle

Proposition

 \exists negative cycle including $i \in V \Rightarrow \mathrm{OPT}(i,i,n) < 0$



 \longrightarrow a negative cycle can be found in $O(n^3)$ time

Another approach: reweighting edges

Dijkstra algorithm is applicable by reweighting edges

• reweight the edges by potential $\pi\colon\thinspace V\to\mathbb{R}$

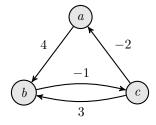
$$\ell'_{(u,v)} := \ell_{(u,v)} + \pi(u) - \pi(v) \ (\ge 0)$$

compute reweighted shortest distances

$$\sum_{i=1}^k \ell'_{(v_i,v_{i+1})} = \sum_{i=1}^k \ell_{(v_i,v_{i+1})} + \pi(v_1) - \pi(v_{k+1})$$

Johnson's algorithm

- 1 add a new node s and add a new edge (s, v) with $\ell_{(s,v)} = 0 \ (\forall v \in V)$;
- 2 compute $\operatorname{dist}(s,v)$ for all $v\in V$ by Bellman–Ford alg.;
- 3 reweight the edges as $\ell'_{(u,v)} \coloneqq \ell_{(u,v)} + \operatorname{dist}(s,u) \operatorname{dist}(s,v);$
- 4 compute reweighted shortest distances $\operatorname{dist}'(u,v)$ by Dijkstra alg.;
- 5 compute original shortest distances dist(u, v) = dist'(u, v) dist(s, u) + dist(s, v);
- \longrightarrow O $(mn + n^2 \log n)$ time



Outline

- Shortest path problem (nonnegative lengths)
- Shortest path problem with negative lengths
- All-pairs shortest paths
- 4 Traveling Salesman Problem

Traveling Salesman Problem

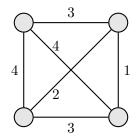
Problem

- Input: set of vertices V with distance $d:\binom{V}{2} \to \mathbb{R}_+$
- Goal: find a shortest cycle that visits all vertices exactly once

naive algorithm: $\Theta(n!)$ time ((n-1)! possibilities)

 \longrightarrow improve it to $O(n^22^n)$

Example



Traveling Salesman Problem

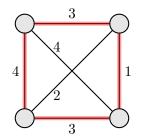
Problem

- Input: set of vertices V with distance $d:\binom{V}{2} o \mathbb{R}_+$
- Goal: find a shortest cycle that visits all vertices exactly once

naive algorithm: $\Theta(n!)$ time ((n-1)! possibilities)

 \longrightarrow improve it to $O(n^22^n)$

Example



length = 11

Dynamic programming (Held–Karp algorithm)

- $V = \{1, 2, \dots, n\}$
- $\mathrm{OPT}(S,j)$: length of the shortest 1-j path through every vertices in S $S\subseteq V\setminus\{1\}, j\in V\setminus S$. optimal value of the original problem is $\mathrm{OPT}(V\setminus\{1\},1)$

Recursive formula

$$\mathrm{OPT}(S,j) = \begin{cases} \min_{i \in S \setminus \{j\}} \mathrm{OPT}(S \setminus \{i\}, i) + d(i,j) & \text{if } |S| > 0 \\ d(i,j) & \text{if } |S| = 0 \end{cases}$$

 $O(n2^n)$ subproblems, each one takes O(n) time $\longrightarrow O(n^22^n)$ time

