Advanced Core in Algorithm Design #4 算法設計要論 第4回

Yasushi Kawase 河瀬 康志

Oct. 26th, 2021

last update: 1:19pm, October 26, 2021

Schedule

Lec. #	Date	Topics
1	10/5	Introduction, Stable matching
2	10/12	Basics of Algorithm Analysis, Graphs
3	10/19	Greedy Algorithms $(1/2)$
4	10/26	Greedy Algorithms $(2/2)$
5	11/2	Divide and Conquer $(1/2)$
6	11/9	Divide and Conquer $(2/2)$
7	11/16	Dynamic Programming $(1/2)$
8	11/30	Dynamic Programming $(2/2)$
9	12/7	Network Flow $(1/2)$
10	12/14	Network Flow $(2/2)$
11	12/21	NP and Computational Intractability
12	1/4	Approximation Algorithms $(1/2)$
13	1/11	Approximation Algorithms $(2/2)$
14	1/18	Final Examination

Outline

- Minimum Spanning Tree Problem
- 2 Matroids

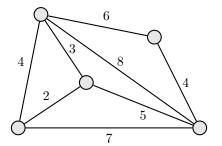
Minimum spanning problem

Problem

- Input: Connected undirected graph G=(V,E), weight $w_e\geq 0\ (e\in E)$
- Goal: Compute a minimum cost spanning tree (MST)

subgraph that is both connected and acyclic

Example minimum cost = 14



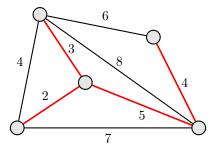
Minimum spanning problem

Problem

- Input: Connected undirected graph G=(V,E), weight $w_e\geq 0\ (e\in E)$
- Goal: Compute a minimum cost spanning tree (MST)

subgraph that is both connected and acyclic

Example minimum cost = 14

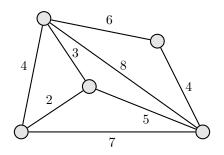


Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

foreach $e \in E$ in increasing order of weight **do**

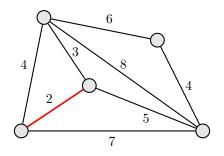


Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

foreach $e \in E$ in increasing order of weight **do**

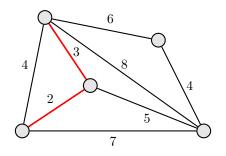


Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

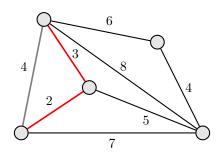
foreach $e \in E$ in increasing order of weight **do**



Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

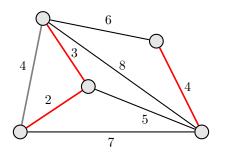


Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

foreach $e \in E$ in increasing order of weight **do**

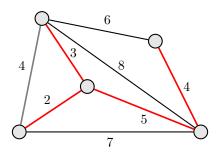


Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

foreach $e \in E$ in increasing order of weight **do**

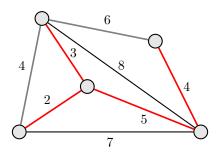


Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

if $F \cup \{e\}$ has no cycle then $F \leftarrow F \cup \{e\}$;

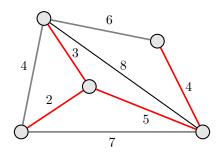


Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

foreach $e \in E$ in increasing order of weight **do**

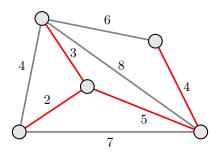


Algorithm

$$F \leftarrow \emptyset$$
;

Sort the edges E by weight;

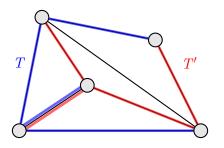
foreach $e \in E$ in increasing order of weight **do**



Structure of Spanning Trees

Lemma for spanning trees T, T'

 $\forall e \in T \setminus T'$, $\exists f \in T' \setminus T$, $T' \cup \{e\} \setminus \{f\}$ is a spanning tree



- There is a cycle C in $(V, T' \cup \{e\})$
- Since T is a tree, $C \not\subseteq T$, and hence $\exists f \in C \setminus T \subseteq T' \setminus T$
- $T' \cup \{e\} \setminus \{f\}$ is a spanning tree

Correctness

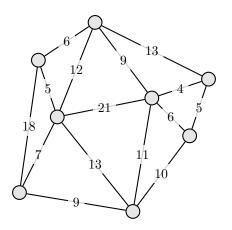
Theorem

Kruskal's algorithm outputs a minimum spanning tree

Proof by contradiction

- T: output of Kruskal's algorithm
- T^* : MST with maximum $|T \cap T^*|$ $(T^* \neq T \text{ by assumption})$
- $e \in T \setminus T^*$: the edge not in T^* that the algorithm firstly choose
- the algorithm is greedy \longrightarrow $c_e \leq c_f$
- $c(T^{**}) = c(T^*) + c_e c_f \le c(T^*) \longrightarrow T^{**}$ is MST
- $|T \cap T^{**}| = |T \cap T^*| + 1$ \longrightarrow contradicts to the definition of T^*

Compute a minimum spanning tree



Outline

- Minimum Spanning Tree Problem
- 2 Matroids

Matroids

Definition

For a finite set E and a subset family $\mathcal{I} \subseteq 2^E$, (E,\mathcal{I}) is a matroid if

- $\emptyset \in \mathcal{I}$
- $X \subseteq Y \in \mathcal{I} \Rightarrow X \in \mathcal{I}$
- $X, Y \in \mathcal{I}, |X| > |Y| \Rightarrow \exists x \in X \setminus Y, Y \cup \{x\} \in \mathcal{I}$

 $X \in \mathcal{I}$ is called independent set

Simple Examples

- $E = \{1, 2\}$, $\mathcal{I} = \{\emptyset, \{1\}, \{2\}\}$ (matroid)
- $E = \{1, 2, 3\}, \ \mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}\} \ (\mathsf{matroid})$
- $E = \{1, 2, 3\}, \mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}\}$ (not matroid)
- $E = \{1, 2, 3, 4\}, \ \mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{3, 4\}\}\$ (not matroid)

Uniform matroid

Proposition

For any natural number $r \geq 0$, $(E, \{X \subseteq E \mid |X| \leq r\})$ is a matroid

- $E = \{1, 2, 3, 4\}, r = 2$
- $\mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}$

Linear matroid

Proposition

 \mathbb{F} is a field

For $a_1, a_2, \ldots, a_n \in \mathbb{F}^m$ and $E = \{a_1, a_2, \ldots, a_n\}$, $(E, \{X \subseteq E \mid X \text{ is linearly independent}\})$ is a matroid

•
$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $a_3 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, $\mathbb{F} = \mathbb{R}$

- $E = \{a_1, a_2, a_3, a_4\}$
- $\mathcal{I} = \{\emptyset, \{a_1\}, \{a_2\}, \{a_3\}, \{a_4\}, \{a_1, a_2\}, \{a_1, a_3\}, \{a_2, a_3\}, \{a_2, a_4\}, \{a_3, a_4\}\}$

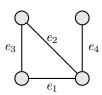
Graphic matroid (cycle matroid)

Proposition

For an undirected graph G=(V,E), $(E,\ \{X\subseteq E\mid X\ \mathrm{does\ not\ contain\ a\ cycle}\})$ is a matroid

a graphic matroid is a linear matroid $(\mathbb{F}=\mathbb{Z}_2)$

- $E = \{e_1, e_2, e_3, e_4\}$
- $\mathcal{I} = \left\{ \begin{cases} \emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_1, e_2\}, \{e_1, e_3\}, \{e_1, e_4\}, \{e_2, e_3\} \\ \{e_2, e_4\}, \{e_3, e_4\}, \{e_1, e_2, e_4\}, \{e_1, e_3, e_4\}, \{e_2, e_3, e_4\} \end{cases} \right\}$



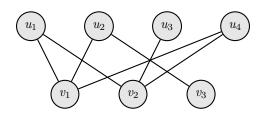
Transversal matroid

Proposition

For a bipartite graph $G=(U,\,V;E)$, $(U,\,\{X\subseteq U\mid \text{there exists a matching that covers }X\})$ is a matroid

a transversal matroid is a linear matroid (e.g. $\mathbb{F}=\mathbb{R}$)

- $U = \{u_1, u_2, u_3, u_4\}$
- $\mathcal{I} = \left\{ \begin{cases} \emptyset, \{u_1\}, \{u_2\}, \{u_3\}, \{u_4\}, \{u_1, u_2\}, \{u_1, u_3\}, \{u_1, u_4\}, \{u_2, u_3\} \\ \{u_2, u_4\}, \{u_3, u_4\}, \{u_1, u_2, u_3\}, \{u_1, u_2, u_4\}, \{u_2, u_3, u_4\} \end{cases} \right\}$



Base

Definition

For a matroid (E,\mathcal{I}) , $B\in\mathcal{I}$ is called base if $\forall e\in E\setminus B$, $B\cup\{e\}\not\in\mathcal{I}$

Proposition

All the bases of a matroid have the same size.

Example

- $E = \{e_1, e_2, e_3, e_4\}$
- $\mathcal{I} = \begin{cases} \emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_1, e_2\}, \{e_1, e_3\}, \{e_1, a_4\}, \{e_2, e_3\} \\ \{e_2, e_4\}, \{e_3, e_4\}, \{e_1, e_2, e_4\}, \{e_1, e_3, e_4\}, \{e_2, e_3, e_4\} \end{cases}$
- $\bullet \mathcal{B} = \{\{e_1, e_2, e_4\}, \{e_1, e_3, e_4\}, \{e_2, e_3, e_4\}\}$

the set of bases

Basis axiom

Definition (basis axioms)

For a finite set E and a subset family $\mathcal{B} \subseteq 2^E$,

- $\mathcal{B} \neq \emptyset$
- $B, B' \in \mathcal{B}$ and $x \in B \setminus B' \Rightarrow \exists y \in B' \setminus B$ such that $B \setminus \{x\} \cup \{y\} \in \mathcal{B}$

Theorem

- (E,\mathcal{I}) is a matroid \Rightarrow the set of bases satisfies the basis axioms
- (E,\mathcal{B}) satisfies the basis axioms $\Rightarrow (E,\bigcup_{B\in\mathcal{B}}2^B)$ is a matroid

Minimum cost base problem

Problem

- Input: matroid (E, \mathcal{I}) , cost $c \colon E \to \mathbb{R}$
- Goal: minimize $\sum_{e \in X} c(e)$ subject to X is a base of (E, \mathcal{I})

Greedy algorithm

Return I;

Theorem

The greedy algorithm outputs a minimum cost base

The proof is the same as the MST case (graphic matroid)

Maximum weight independent set problem

Problem

- Input: matroid (E, \mathcal{I}) , weight $w \colon E \to \mathbb{R}_+$
- Goal: maximize $\sum_{e \in X} w(e)$ subject to $X \in \mathcal{I}$

Greedy algorithm

Return I;

Theorem

The greedy algorithm outputs a maximum weight independent set

: the algorithm outputs a base X that minimizes $\sum_{e \in X} -w(e)$

Matroids and Greedy algorithm (1/2)

Problem $\emptyset \in \mathcal{I} \text{ and } Y \subseteq X \in \mathcal{I} \Rightarrow Y \in \mathcal{I}$

- Input: independence system (E,\mathcal{I}) , weight $w\colon E o \mathbb{R}_+$
- Goal: maximize $\sum_{e \in X} w(e)$ subject to $X \in \mathcal{I}$

Greedy algorithm

Return I;

Theorem

For independence system (E,\mathcal{I}) , the following two are equivalent

- (i) for any $w \colon E \to \mathbb{R}_+$, the greedy algorithm outputs an optimal solution
- (ii) (E, \mathcal{I}) is a matroid

Matroids and Greedy algorithm (2/2)

Theorem

For independence system (E,\mathcal{I}) , the following two are equivalent

- (i) for any $w \colon E \to \mathbb{R}_+$, the greedy algorithm outputs an optimal solution
- (ii) (E,\mathcal{I}) is a matroid

Proof

- We only prove $\overline{(ii)} \Rightarrow \overline{(i)}$ since $(ii) \Rightarrow (i)$ is already shown
- Suppose that (E,\mathcal{I}) is not a matroid. Then, we have $\exists X,\,Y\in\mathcal{I} \text{ s.t. } |X|>|Y| \text{ and } \forall e\in X\setminus Y,\ Y\cup\{e\}\not\in\mathcal{I}$
- The greedy algorithm does not output an optimal solution when

$$w(e) = \begin{cases} 1 + \epsilon & \text{if } e \in Y \\ 1 & \text{if } e \in X \setminus Y \\ 0 & \text{otherwise} \end{cases}$$