Advanced Core in Algorithm Design #3 算法設計要論 第3回

Yasushi Kawase 河瀬 康志

Oct. 19th, 2021

last update: 1:41pm, October 19, 2021

Schedule

Lec. #	Date	Topics
1	10/5	Introduction, Stable matching
2	10/12	Basics of Algorithm Analysis, Graphs
3	10/19	Greedy Algorithms $(1/2)$
4	10/26	Greedy Algorithms $(2/2)$
5	11/2	Divide and Conquer $(1/2)$
6	11/9	Divide and Conquer $(2/2)$
7	11/16	Dynamic Programming $(1/2)$
8	11/30	Dynamic Programming $(2/2)$
9	12/7	Network Flow $(1/2)$
10	12/14	Network Flow $(2/2)$
11	12/21	NP and Computational Intractability
12	1/4	Approximation Algorithms $(1/2)$
13	1/11	Approximation Algorithms $(2/2)$
14	1/18	Final Examination

Outline

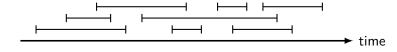
- Interval Scheduling
- 2 Interval Partitioning
- Scheduling to Minimize Lateness

Interval Scheduling

Problem

- Input: jobs $J = \{1, 2, \dots, n\}$, job j starts at s(j) and finishes at f(j)
- Goal: find maximum subset of mutually compatible jobs

two jobs that don't overlap



Interval Scheduling

Problem

- Input: jobs $J = \{1, 2, \dots, n\}$, job j starts at s(j) and finishes at f(j)
- Goal: find maximum subset of mutually compatible jobs

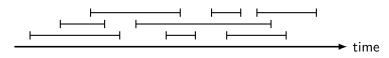
two jobs that don't overlap

Algorithm

Greedy Algorithm

```
\begin{split} R \leftarrow J, \ A \leftarrow \emptyset; \\ \textbf{while} \ R \neq \emptyset \ \textbf{do} \\ & \quad | \ \text{Let} \ i \in \arg\min\{f(i) \mid i \in R\}; \\ & \quad A \leftarrow A \cup \{i\}; \\ & \quad R \leftarrow \{j \in R \mid s(j) > f(i)\}; \end{split}
```

Return A;



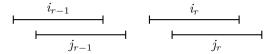
Optimality

Theorem

The greedy algorithm outputs an optimal solution

Proof

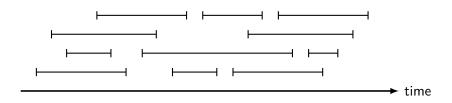
- $A = \{i_1, i_2, \dots, i_k\}$: algorithm's output $(f(i_1) \leq \dots \leq f(i_k))$
- $A^* = \{j_1, j_2, \dots, j_m\}$: optimal solution $(f(j_1) \leq \dots \leq f(j_m))$
- Claim: $f(i_r) \leq f(j_r)$ for all $r = 1, 2, \dots, k$
 - Base case: $f(i_1) \le f(j_1)$ by the definition
 - Induction step: $f(i_{r-1}) \le f(j_{r-1}) \Rightarrow f(i_r) \le f(j_r)$



• If m > k, the algorithm can choose j_{k+1} after $i_k \longrightarrow$ Contradiction

Quiz

What is the optimal value of the following interval scheduling?



Outline

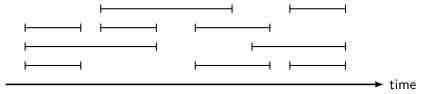
- Interval Scheduling
- 2 Interval Partitioning
- Scheduling to Minimize Lateness

Interval Partitioning (Interval Coloring)

Problem

- Input: jobs $J=\{1,2,\ldots,n\}$, job j starts at s(j) and finishes at f(j)
- Goal: minimum number of people who can do all jobs

each person can do at most one job simultaneously



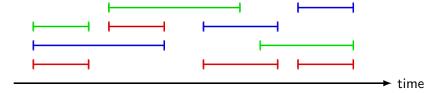
Interval Partitioning (Interval Coloring)

Problem

- Input: jobs $J = \{1, 2, \dots, n\}$, job j starts at s(j) and finishes at f(j)
- Goal: minimum number of people who can do all jobs

each person can do at most one job simultaneously

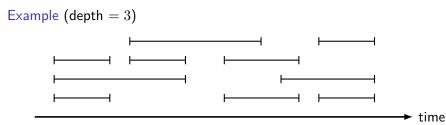
Example (optimal = 3)



Basic observation

Observation maximum number of pairwise overlapping intervals

the optimal value $\geq \frac{depth}{depth}$



Basic observation

Observation

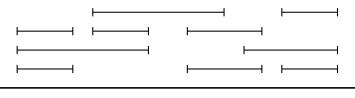
maximum number of pairwise overlapping intervals

the optimal value $\geq \frac{depth}{depth}$

Theorem

the optimal value = depth

Example (depth = 3)



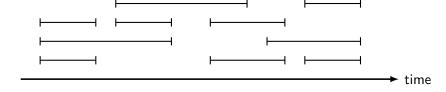
Algorithm

Greedy Algorithm

sort and relabel the jobs by their start times ($s(1) \le \cdots \le s(n)$); let d be the depth and prepare d people;

$$\textbf{for } j \leftarrow 1, 2, \dots, n \textbf{ do}$$

assign j to any person who is free within time (s(j),f(j));



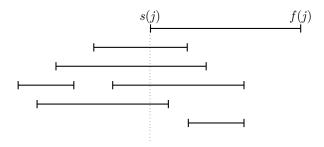
Correctness

Theorem

The greedy algorithm correctly assigns the jobs to d people

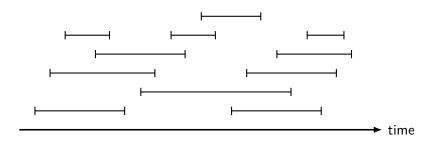
Proof: when the algorithm assigns job j, at least one person is free

→ the greedy algorithm is correct



Quiz

What is the optimal value of the following interval partitioning?



Outline

- Interval Scheduling
- 2 Interval Partitioning
- Scheduling to Minimize Lateness

Scheduling to Minimize Lateness

Problem

- Input: n jobs $J = \{1, 2, \ldots, n\}$ job j has deadline d_j and processing time t_j
- Goal: minimize the maximum lateness

$$\max\{0,\,f_j-d_j\}$$
 where f_j is the finish time of j

$$\begin{array}{c}
d_2 = 4 \\
\text{Job 2} \quad t_2 = 2
\end{array}$$

Job 3
$$t_3 = 4$$

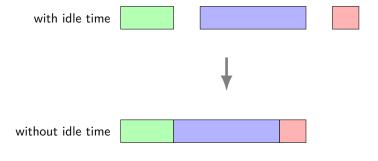
Algorithm

Greedy Algorithm (Earliest Deadline First)

Basic observation

Observation

There is an optimal schedule with no idle time



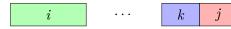
Inversion

Definition

 $(i,j) \in J^2$ is inversion if (1) i is scheduled before j and (2) $d_i > d_j$

Observation

 \exists inversion $\Longrightarrow \exists$ adjacent (consecutively scheduled) inversion



Suppose that (i, j) is inversion $(d_i > d_j)$

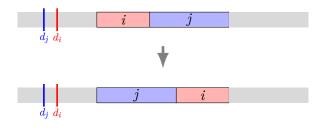
- if $d_k \leq d_j \Rightarrow (i, k)$ is inversion
- if $d_k > d_j \Rightarrow (k, j)$ is inversion
- repeating this, we can find an adjacent inversion

Optimality

Proposition

Swapping an adjacent inversion does not increase maximum lateness

→ any schedule with no inversions and no idle time is optimal

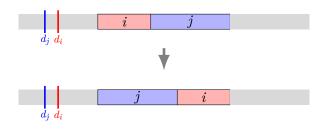


Optimality

Proposition

Swapping an adjacent inversion does not increase maximum lateness

→ any schedule with no inversions and no idle time is optimal



Theorem

The greedy algorithm outputs an optimal schedule

Quiz

What is the minimum of the maximum lateness?

