Advanced Core in Algorithm Design #13 算法設計要論 第13回

Yasushi Kawase 河瀬 康志

Jan. 11th, 2022

last update: 12:21pm, January 11, 2022

Schedule

Lec. #	Date	Topics
1	10/5	Introduction, Stable matching
2	10/12	Basics of Algorithm Analysis, Graphs
3	10/19	Greedy Algorithms $(1/2)$
4	10/26	Greedy Algorithms $(2/2)$
5	11/2	Divide and Conquer $(1/2)$
6	11/9	Divide and Conquer $(2/2)$
7	11/16	Dynamic Programming $(1/2)$
8	11/30	Dynamic Programming $(2/2)$
9	12/7	Network Flow $(1/2)$
10	12/14	Network Flow $(2/2)$
11	12/21	NP and Computational Intractability
12	1/4	Approximation Algorithms $(1/2)$
13	1/11	Approximation Algorithms $(2/2)$
14	1/18	Final Examination

Guideline of Final Examination

- A password-protected file will be uploaded to ITC-LMS until the day
- The password will be announced at Zoom used in the class
- After the exam., submit your answer file to ICT-LMS (Assignments/課題)
- You may use textbooks and notes
- Discussion with other students are not allowed
- Internet search is not allowed
- If you cannot take the exam, please email me with the reason
- I will send the password after the examination
- Then, submit your answer file by Jan. 25

Outline

- Set Cover Problem
- Monotone Submodular Maximization
- Knapsack Problem

Set Cover Problem

Problem

- Input: $U = \{e_1, \dots, e_n\}, S_1, S_2, \dots, S_m \subseteq U$
- Goal: minimize |J| s.t. $J\subseteq [m]$ and $\bigcup_{j\in J}S_j=U$

This problem is NP-hard since the decision version is NP-complete

- $U = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$
- $S_1 = \{e_1, e_2, e_3\}$
- $S_2 = \{e_1, e_4, e_5, e_7\}$
- $S_3 = \{e_3, e_6, e_7\}$
- $S_4 = \{e_4, e_5, e_6, e_7\}$

Algorithm

```
1 J \leftarrow \emptyset;

2 while \bigcup_{j \in J} S_j \subsetneq U do

3 | Select j^* \in [m] that maximizes |S_{j^*} \setminus \bigcup_{j \in J} S_j|;

4 | J \leftarrow J \cup \{j^*\};

5 Return J;
```

Example $J = \emptyset$

- $U = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$
- $S_1 = \{e_1, e_2, e_3\}$ \longrightarrow $S_1 \setminus \bigcup_{j \in J} S_j = \{e_1, e_2, e_3\}$
- $S_2 = \{e_1, e_4, e_5, e_7\} \longrightarrow S_2 \setminus \bigcup_{j \in J} S_j = \{e_1, e_4, e_5, e_7\}$
- $S_3 = \{e_3, e_6, e_7\}$ \longrightarrow $S_3 \setminus \bigcup_{i \in J} S_i = \{e_3, e_6, e_7\}$
- $S_4 = \{e_4, e_5, e_6, e_7\} \longrightarrow S_4 \setminus \bigcup_{i \in J} S_i = \{e_4, e_5, e_6, e_7\}$

Algorithm

```
1 J \leftarrow \emptyset;

2 while \bigcup_{j \in J} S_j \subsetneq U do

3 | Select j^* \in [m] that maximizes |S_{j^*} \setminus \bigcup_{j \in J} S_j|;

4 | J \leftarrow J \cup \{j^*\};

5 Return J;
```

Example $J = \{2\}$

- $U = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$
- $S_1 = \{e_1, e_2, e_3\}$ \longrightarrow $S_1 \setminus \bigcup_{j \in J} S_j = \{e_2, e_3\}$
- $S_2 = \{e_1, e_4, e_5, e_7\}$
- $S_3 = \{e_3, e_6, e_7\}$ \longrightarrow $S_3 \setminus \bigcup_{i \in J} S_i = \{e_3, e_6\}$
- $S_4 = \{e_4, e_5, e_6, e_7\} \longrightarrow S_4 \setminus \bigcup_{i \in I} S_i = \{e_6\}$

Algorithm

```
1 J \leftarrow \emptyset;

2 while \bigcup_{j \in J} S_j \subsetneq U do

3 | Select j^* \in [m] that maximizes |S_{j^*} \setminus \bigcup_{j \in J} S_j|;

4 | J \leftarrow J \cup \{j^*\};

5 Return J;
```

Example
$$J = \{1, 2\}$$

- $U = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$
- $S_1 = \{e_1, e_2, e_3\}$
- $S_2 = \{e_1, e_4, e_5, e_7\}$
- $S_3 = \{e_3, e_6, e_7\}$ $\longrightarrow S_3 \setminus \bigcup_{j \in J} S_j = \{e_6\}$
- $S_4 = \{e_4, e_5, e_6, e_7\} \longrightarrow S_4 \setminus \bigcup_{j \in J} S_j = \{e_6\}$

Algorithm

```
1 J \leftarrow \emptyset;

2 while \bigcup_{j \in J} S_j \subsetneq U do

3 | Select j^* \in [m] that maximizes |S_{j^*} \setminus \bigcup_{j \in J} S_j|;

4 | J \leftarrow J \cup \{j^*\};

5 Return J;
```

Example $J = \{1, 2, 3\}$

- $U = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$
- $S_1 = \{e_1, e_2, e_3\}$
- $S_2 = \{e_1, e_4, e_5, e_7\}$
- $S_3 = \{e_3, e_6, e_7\}$
- $S_4 = \{e_4, e_5, e_6, e_7\} \longrightarrow S_4 \setminus \bigcup_{i \in J} S_i = \emptyset$

Analysis of the greedy algorithm

Theorem

The greedy algorithm is an $O(\log n)$ -approximation algorithm

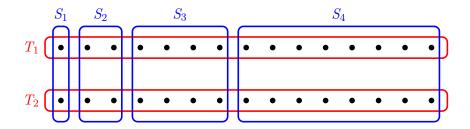
Proof

• e_1, e_2, \ldots, e_n : an order in which they were covered by the algorithm

- $p(e_k) \coloneqq (\# \text{ of covered elements at the same time as } e_k)$ $\geq \frac{n-k+1}{\mathrm{OPT}}$ (: at least n-k+1 elements are not covered before e_k is covered)
- ALG = $\sum_{e_k \in U} \frac{1}{p(e_k)} \le \sum_{e_k \in U} \frac{\text{OPT}}{n-k+1} = \sum_{t=1}^n \frac{\text{OPT}}{t} = H_n \cdot \text{OPT} = O(\log n) \cdot \text{OPT}$

Worst case example

The greedy algorithm outputs $\Omega(\log n)$ -approx. solution for the following



Outline

- Set Cover Problem
- 2 Monotone Submodular Maximization
- Knapsack Problem

Monotone Submodular Function

Definition

A function $f \colon 2^E \to \mathbb{R}$ is called

- monotone if $f(X) \le f(Y) \ (\forall X \subseteq \forall Y \subseteq E)$
- submodular if $f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y) \ (\forall X, Y \subseteq E)$
- normalized if $f(\emptyset) = 0$

- linear function: $f(X) = \sum_{i \in X} w_i$
- coverage function: $f(X) = \left| \bigcup_{i \in X} S_i \right|$
- matroid rank function: $f(X) = \max\{|X'| : X' \subseteq X, X' \in \mathcal{I}\}$

Monotone Submodular Maximization

Problem

- Input: monotone submodular function $f \colon 2^E \to \mathbb{R}_+$ and $k \in \{1,\dots,|E|\}$
- Goal: maximize f(X) subject to $|X| \le k$

Set cover problem \leq_P Monotone submodular maximization problem

→ Monotone submodular maximization problem is NP-hard

•
$$U = \{1, 2, \dots, 13\}$$

•
$$S_1 = \{1, 2, 3\}$$

•
$$S_2 = \{2, 3, 4, 5, 6\}$$

•
$$S_3 = \{4, 5, 6, 7, 8, 9, 10\}$$

•
$$S_4 = \{8, 9, 10, 11, 12, 13\}$$

•
$$E = \{1, 2, 3, 4\}$$

•
$$f(X) = \left| \bigcup_{i \in X} S_i \right|$$

•
$$k = 2$$

```
\begin{array}{ll} \text{1 Initially } S^{(0)} \leftarrow \emptyset; \\ \text{2 for } \ell \leftarrow 1, 2, \dots, k \text{ do} \\ \text{3 } & \text{Let } e^{(\ell)} \in \arg\max\{f(S^{(\ell-1)} \cup \{e\}) - f(S^{(\ell-1)}) \mid e \in E \setminus S\}; \\ \text{4 } & S^{(\ell)} \leftarrow S^{(\ell-1)} \cup \{e^{(\ell)}\}; \\ \text{5 Return } S^{(k)}; \end{array}
```

•
$$U = \{1, 2, \dots, 13\}$$

•
$$S_1 = \{1, 2, 3\}$$

•
$$S_2 = \{2, 3, 4, 5, 6\}$$

•
$$S_3 = \{4, 5, 6, 7, 8, 9, 10\}$$

•
$$S_4 = \{8, 9, 10, 11, 12, 13\}$$

•
$$E = \{1, 2, 3, 4\}$$

•
$$f(X) = \left| \bigcup_{i \in X} S_i \right|$$

•
$$k = 2$$

Approximation ratio

Lemma 1

For all $T\subseteq T'\subseteq E$, $f(T')-f(T)\leq \sum_{e\in T'\setminus T}(f(T\cup\{e\})-f(T))$

Lemma 2

$$f(S^{(\ell)}) - f(S^{(\ell-1)}) \geq \frac{1}{|S^* \backslash S^{(\ell-1)}|} (f(S^*) - f(S^{(\ell-1)})) \geq \frac{1}{k} (f(S^*) - f(S^{(\ell-1)}))$$

Theorem

$$f(S^{(\ell)}) \ge \left(1 - \left(1 - \frac{1}{k}\right)^{\ell}\right) f(S^*)$$

The greedy algorithm is a (1-1/e)-approximation algorithm because $f(S^{(k)}) \geq \left(1-\left(1-\frac{1}{k}\right)^k\right)f(S^*) \geq \left(1-\frac{1}{e}\right)f(S^*)$ by the theorem

Proof of Lemma 1

Lemma 1

For all
$$T\subseteq T'\subseteq E$$
, $f(T')-f(T)\leq \sum_{e\in T'\setminus T}(f(T\cup\{e\})-f(T))$

Proof

- Let $T' \setminus T = \{e_1, e_2, \dots, e_m\}$
- $T_0 = T, T_1 = T \cup \{e_1\}, \dots, T_\ell = T \cup \{e_1, \dots, e_\ell\}, \dots, T_m = T'$
- By submodularity, $f(T_{\ell-1} \cup \{e_\ell\}) f(T_{\ell-1}) \le f(T \cup \{e_\ell\}) f(T)$
- By summing up the inequalities, we get the desired inequality

Proof of Lemma 2

Lemma 1

For all $T\subseteq T'\subseteq E$, $f(T')-f(T)\leq \sum_{e\in T'\setminus T}(f(T\cup\{e\})-f(T))$

Lemma 2

$$f(S^{(\ell)}) - f(S^{(\ell-1)}) \ge \frac{1}{|S^* \setminus S^{(\ell-1)}|} (f(S^*) - f(S^{(\ell-1)})) \ge \frac{1}{k} (f(S^*) - f(S^{(\ell-1)}))$$

Proof

• For each $\ell \in \{1, \ldots, k\}$, we have

$$\begin{split} f(S^*) - f(S^{(\ell-1)}) &\leq f(S^* \cup S^{(\ell-1)}) - f(S^{(\ell-1)}) \\ &\leq \sum_{e \in S^* \backslash S^{(\ell-1)}} (f(S^{(\ell-1)} \cup \{e\}) - f(S^{(\ell-1)})) \\ &\leq |S^* \backslash S^{(\ell-1)}| \cdot \max_{e \in S^* \backslash S^{(\ell-1)}} (f(S^{(\ell-1)} \cup \{e\}) - f(S^{(\ell-1)})) \\ &\leq |S^* \backslash S^{(\ell-1)}| \cdot (f(S^{(\ell)}) - f(S^{(\ell-1)})) \end{split}$$

• The second inequality of Lemma 2 holds by $|S^* \setminus S^{(\ell-1)}| \leq k$

Proof of Theorem

Theorem

$$f(S^{(\ell)}) \ge \left(1 - \left(1 - \frac{1}{k}\right)^{\ell}\right) f(S^*)$$

Proof by induction

- Base step $(\ell = 0)$: $f(S^{(0)}) = 0 = (1 (1 1/k)^0) f(S^*)$
- Induction step $(\ell \geq 1)$:

$$\begin{split} f(S^{(\ell+1)}) &\geq f(S^{(\ell)}) + \frac{1}{k} \left(f(S^*) - f(S^{(\ell)}) \right) \\ \text{by Lemma 2} &= \left(1 - \frac{1}{k} \right) \cdot f(S^{(\ell)}) + \frac{1}{k} \cdot f(S^*) \\ &\geq \left(1 - \frac{1}{k} \right) \left(1 - \left(1 - \frac{1}{k} \right)^\ell \right) \cdot f(S^*) + \frac{1}{k} \cdot f(S^*) \\ &= \left(1 - \left(1 - \frac{1}{k} \right)^{\ell+1} \right) \cdot f(S^*) \end{split}$$
 induction hypothesis

Outline

- Set Cover Problem
- 2 Monotone Submodular Maximization
- Knapsack Problem

Knpsack problem

Problem

- Input: items $E=\{1,2,\ldots,n\}$ and a capacity $W\in\mathbb{Z}_+$ item i has value $v_i\in\mathbb{Z}_+$ and size $w_i\in\mathbb{Z}_+$
- Goal: maximize $\sum_{i \in I} v_i$ subject to $I \subseteq \{1, 2, \dots, n\}$ $\sum_{i \in I} w_i \leq W$

Recap: knapsack problem is NP-hard

Knpsack problem

Problem

- Input: items $E=\{1,2,\ldots,n\}$ and a capacity $W\in\mathbb{Z}_+$ item i has value $v_i\in\mathbb{Z}_+$ and size $w_i\in\mathbb{Z}_+$
- Goal: maximize $\sum_{i \in I} v_i$ subject to $I \subseteq \{1, 2, \dots, n\}$ $\sum_{i \in I} w_i \leq W$

Recap: knapsack problem is \mathbf{NP} -hard

Examples

optimal value is 61 + 82 + 38 + 63 = 244

Continuous knapsack problem

(Integral) Knapsack problem

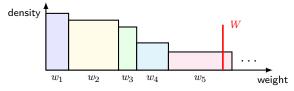
$$\max \quad \sum_{i \in E} v_i x_i \quad \text{s.t.} \quad \sum_{i \in E} w_i x_i \leq W, \quad x_i \in \{0, 1\} \ (\forall i \in E)$$

Continuous Knapsack problem

$$\max \quad \sum_{i \in E} v_i x_i \quad \text{s.t.} \quad \sum_{i \in E} w_i x_i \le W, \quad x_i \in [0, 1] \ (\forall i \in E)$$

Observations

- $OPT^{int} \leq OPT^{cont}$
- fractional knapsack problem can be solved by a greedy algorithm descending order of their density (values per unit weight v_i/w_i)



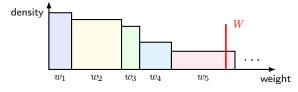
1/2-approximation algorithm

- 1 Sort items (with size $\leq W$) and relabel so that $\frac{v_1}{w_1} \geq \frac{v_2}{w_2} \geq \cdots \geq \frac{v_n}{w_n}$;
- 2 Let k be the index such that $\sum_{i=1}^{k-1} w_i \leq W < \sum_{i=1}^k w_i$;
- 3 Pick the better of $\{1,2,\ldots,k-1\}$ and $\{k\}$;

Theorem

The above algorithm is 1/2-approximation

- $\mathbf{x}^* = (1, \dots, 1, \frac{1}{k-1}, \frac{W \sum_{i=1}^{k-1} w_i}{w_k}, \frac{0}{k+1}, \dots, \frac{0}{n})$ is optimal for cont. ver.
- $2 \max \left\{ \sum_{i=1}^{k-1} v_i, v_k \right\} \ge \sum_{i=1}^k v_i \ge \sum_{i=1}^n v_i x_i^* \ge \text{OPT}^{\mathsf{cont}} \ge \text{OPT}^{\mathsf{int}}$

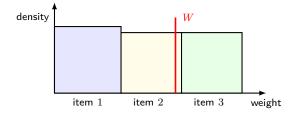


Worst case

Instance

$$n=3$$
 and $W=2$

- item 1: $v_1 = (1 + \epsilon)^2$, $w_1 = 1 + \epsilon$
- item 2: $v_2 = 1$, $w_2 = 1$
- item 3: $v_3 = 1$, $w_3 = 1$



$$\begin{array}{ll} {\sf Analysis} & \frac{{\sf ALG}}{{\sf OPT}} = \frac{(1+\epsilon)^2}{2} \to \frac{1}{2} & (\epsilon \to 0) \end{array}$$

PTAS and FPTAS

Definition: Polynomial-time approximation scheme (PTAS)

A PTAS is a $(1-\epsilon)$ -approximation algorithm that runs in time polynomial in the problem size for any constant $\epsilon>0$

Definition: Fully polynomial-time approximation scheme (FPTAS)

A FPTAS is a $(1-\epsilon)$ -approximation algorithm that runs in time polynomial in both the problem size and $1/\epsilon$ for any $\epsilon>0$

- A $(1-\epsilon)$ -approximation algorithm that runs in $O(n^{1/\epsilon})$ or $O(n^{(1/\epsilon)^{1/\epsilon}})$ is PTAS but not FPTAS
- We will see PTAS and FPTAS for the knapsack problem

PTAS

Idea: guess the top- ℓ for value in the optimal solution

Algorithm

- 1 Sort items (with size $\leq W$) and relabel so that $\frac{v_1}{w_1} \geq \frac{v_2}{w_2} \geq \cdots \geq \frac{v_n}{w_n}$;
- 2 foreach nonempty $X \subseteq E$ with $|X| \le \ell$ and $\sum_{i \in X} w_i \le W$ do

```
3 S_X \leftarrow X and v^* \leftarrow \min_{i \in X} v_i;

4 for i \leftarrow 1, 2, \dots, n do

5 if i \not\in X, v_i \leq v^*, and w(S_X) + w_i \leq W then

6 S_X \leftarrow S_X \cup \{i\};
```

7 Return the optimal solution among S_X ;

Theorem

The above algorithm is $(1-\frac{1}{\ell+1})$ -approximation and runs in $O(n^{\ell+1})$ time

- ullet $\mathrm{O}(n^\ell)$ possibilities of X imply $\mathrm{O}(n^{\ell+1})$ time ${}_{+\mathrm{O}(n\log n)}$ time for sort
- By setting $\ell=\lceil 1/\epsilon \rceil-1$, it is $(1-\epsilon)$ -approx. alg. that runs in $\mathrm{O}(n^{\lceil 1/\epsilon \rceil})$ time

Proof of approximation ratio

Theorem

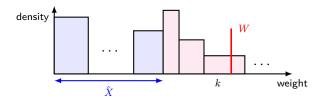
The algorithm is $(1 - \frac{1}{\ell+1})$ -approximation

Proof

- Assumption: the optimal solution contains at least $\ell+1$ items since otherwise the algorithm outputs the optimal solution
- Let X^* be the optimal solution and let \hat{X} be the top- ℓ items in it

•
$$v(X^*) \le v(S_{\hat{X}}) + \sum_{i=1}^k v_i \le v(S_{\hat{X}}) + \sum_{i=1}^{k-1} v_i + \frac{v(X^*)}{\ell+1}$$

 $\longrightarrow \text{ALG} \ge v(S_{X^*}) - v_k \ge (1 - \frac{1}{\ell+1})v(X^*) = (1 - \frac{1}{\ell+1})\text{OPT}$



Recap: Dynamic programming for knapsack problem

$$OPT(k, w) = \max\{v(X) \mid X \subseteq \{1, 2, ..., k\}, \ w(X) \le w\}$$

Recursive formula

$$\mathrm{OPT}(k,w) = \begin{cases} 0 & \text{if } k = 0, \\ \mathrm{OPT}(k-1,w) & \text{if } w_k > w \\ \max\{\mathrm{OPT}(k-1,w), \ \mathrm{OPT}(k-1,b-w_k) + v_k\} & \text{otherwise} \end{cases}$$

Compute for
$$k=0,1,\ldots,n$$
 and $w=0,1,\ldots,W\longrightarrow O(nW)$ time

Example
$$(w_i, v_i) = (4, 55), (2, 61), (9, 82), (1, 38), (3, 63), W = 16$$

0 0	_	$k \backslash w$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2 0 0 61 61 61 116 <t< th=""><th>-</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></t<>	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3 0 0 61 61 61 116 116 116 116 143 143 143 143 198 198 4 0 38 61 99 99 99 116 154 154 154 154 181 181 181 198 236		1	0	0	0	0	55	55	55	55	55	55	55	55	55	55	55	55	55
4 0 38 61 99 99 99 116 154 154 154 154 154 181 181 181 198 236		2	0	0	61	61	61	61	116	116	116	116	116	116	116	116	116	116	116
	_	3	0	0	61	61	61	61	116	116	116	116	116	143	143	143	143	198	198
5 0 38 61 00 101 124 162 162 162 170 217 217 217 217 217 244 244	_	4	0	38	61	99	99	99	116	154	154	154	154	154	181	181	181	198	236
3 0 30 01 99 101 124 102 102 119 211 211 211 211 244 244	_	5	0	38	61	99	101	124	162	162	162	179	217	217	217	217	217	244	244

Another dynamic programming for knapsack problem

$$OPT(k, v) = min\{w(X) \mid X \subseteq \{1, 2, ..., k\}, v(X) = v\}$$

Recursive formula

$$\mathrm{OPT}(k,v) = \begin{cases} 0 & \text{if } v = 0, \\ +\infty & \text{else if } k = 0, \\ \min\{\mathrm{OPT}(k,v), \ \mathrm{OPT}(k-1,v-v_k) + w_k\} & \text{else if } v \geq v_k, \\ \mathrm{OPT}(k-1,v) & \text{otherwise} \end{cases}$$

Compute for
$$k = 0, 1, ..., n$$
 and $v = 0, 1, ..., \sum_{i=1}^{n} v_i \longrightarrow O(n^2 \max_i v_i)$ time

Example
$$(w_i, v_i) = (55, 4), (61, 2), (82, 6), (38, 1), (63, 3), W = 160$$

$k \setminus i$	י	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
)	0	∞															
1	L	0	∞	∞	∞	55	∞											
2	2	0	∞	61	∞	55	∞	116	∞									
3	3	0	∞	61	∞	55	∞	82	∞	143	∞	137	∞	198	∞	∞	∞	∞
	1	0	38	61	99	55	93	82	120	143	181	137	175	198	236	∞	∞	∞
Ę	5	0	38	61	63	55	93	82	118	143	145	137	175	198	200	238	261	299

FPTAS

Idea: scale down the value of every item into $0, 1, \ldots, \ell$

Algorithm

- 1 Let $v_{\max} = \max_{i'=1}^{n} v_{i'}$;
- 2 For each item i, let $\hat{v}_i = \left\lfloor \frac{v_i}{v_{\max}} \cdot \ell \right\rfloor$ (delete i with $w_i > W$);
- 3 Compute the optimal solution for $((w_1, \hat{v}_1), \dots, (w_n, \hat{v}_n); W)$ by the dynamic programming and output it;

Theorem

The above algorithm is $(1-\frac{n}{\ell})\text{-approximation}$ and runs in $O(n^2\ell)$ time

- The running time is $O(n^2\ell)$ since $\max_i \hat{v}_i = \ell$
- By setting $\ell=\left\lfloor\frac{n}{\epsilon}\right\rfloor$, it is $(1-\epsilon)$ -approx. alg. that runs in $\mathrm{O}(\frac{n^3}{\epsilon})$ time

Proof of approximation ratio

Theorem

The algorithm is $(1-\frac{n}{\ell})$ -approximation

Proof

- Let X* be the optimal solution and let X be the output of the algorithm
- $\frac{v_i}{v_{\max}} \cdot \ell 1 < \hat{v}_i = \left| \frac{v_i}{v_{\max}} \cdot \ell \right| \le \frac{v_i}{v_{\max}} \cdot \ell$
- Thus, we have

$$X$$
 is optimal for \hat{v}_i

$$\sum_{i \in X} v_i \geq \sum_{i \in X} \hat{v}_i \cdot \frac{v_{\text{max}}}{\ell} \geq \frac{v_{\text{max}}}{\ell} \sum_{i \in X^*} \hat{v}_i \geq \frac{v_{\text{max}}}{\ell} \sum_{i \in X^*} \left(\frac{v_i}{v_{\text{max}}} \ell - 1\right)$$

$$= \sum_{i \in X^*} v_i - \frac{v_{\text{max}}}{\ell} |X^*| \geq \left(1 - \frac{|X^*|}{\ell}\right) \sum_{i \in X^*} v_i \geq \left(1 - \frac{n}{\ell}\right) \sum_{i \in X^*} v_i$$

$$\frac{v_{\text{max}} \leq \sum_{i \in X^*} v_i}{v_{\text{max}}} \leq \sum_{i \in X^*} v_i$$