Advanced Core in Algorithm Design #12 算法設計要論 第12回

Yasushi Kawase 河瀬 康志

Jan. 4th, 2022

last update: 5:09pm, January 16, 2022

Schedule

Lec. #	Date	Topics
1	10/5	Introduction, Stable matching
2	10/12	Basics of Algorithm Analysis, Graphs
3	10/19	Greedy Algorithms $(1/2)$
4	10/26	Greedy Algorithms $(2/2)$
5	11/2	Divide and Conquer $(1/2)$
6	11/9	Divide and Conquer $(2/2)$
7	11/16	Dynamic Programming $(1/2)$
8	11/30	Dynamic Programming $(2/2)$
9	12/7	Network Flow $(1/2)$
10	12/14	Network Flow $(2/2)$
11	12/21	NP and Computational Intractability
12	1/4	Approximation Algorithms $(1/2)$
13	1/11	Approximation Algorithms $(2/2)$
14	1/18	Final Examination

Guideline of Final Examination

- A password-protected file will be uploaded to ITC-LMS until the day
- The password will be announced at Zoom used in the class
- After the exam., submit your answer file to ICT-LMS (Assignments/課題)
- You may use textbooks and notes
- Discussion with other students are not allowed
- Internet search is not allowed
- If you cannot take the exam, please email me with the reason
- I will send the password after the examination
- Then, submit your answer file by Jan. 25

Outline

- Approximation algorithm
- 2 Load balancing problem
- Vertex Cover
- Traveling Salesman Problem

Coping with NP-hardness

What can we do for an NP-hard problem

- Exponential time algorithm
- Heuristics
- Approximation algorithm
- FPT (fixed parameter tractability)

Approximation algorithm

Definition

For a maximization problem " $\max f(x)$ s.t. $x \in X$ ", $0 \le \alpha \le 1$ a solution $x^* \in X$ is an α -approximation solution if $f(x^*) \ge \alpha \cdot \mathrm{OPT}$

Definition

For a minimization problem " $\min f(x)$ s.t. $x \in X$ ", a solution $x^* \in X$ is an α -approximation solution if $f(x^*) \leq \alpha \cdot \mathrm{OPT}$

Definition

An α -approximation algorithm is a polynomial-time algorithm that finds an α -approximation solution for any instance

Outline

- Approximation algorithm
- 2 Load balancing problem
- Vertex Cover
- Traveling Salesman Problem

Load balancing

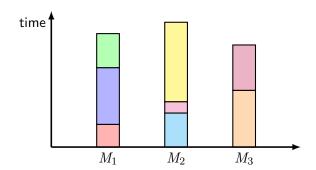
Problem

- ullet Input: m identical machines, n jobs; job j has processing time t_j
- Goal: find an assignment that minimizes makespan

$$A \colon [n] o 2^{[m]}$$
 of jobs

$$\max_{i} \sum_{j \in A(i)} t_j$$

Example



Hardness of Load balancing

Theorem

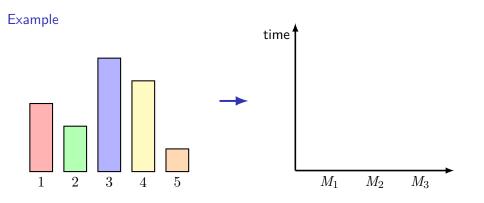
Load balancing problem is NP-hard even if m=2

Proof: PARTITION \leq_P Load-Balance

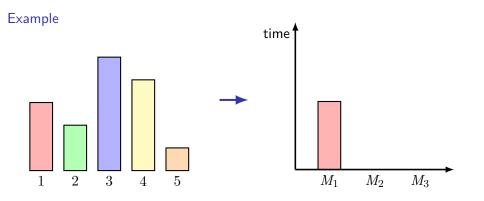
PARTITION Problem

Given $a_1,a_2,\ldots,a_n\in\mathbb{Z}_+$, is there $I\subseteq [n]$ such that $\sum_{i\in I}a_i=\sum_{i\not\in I}a_i$?

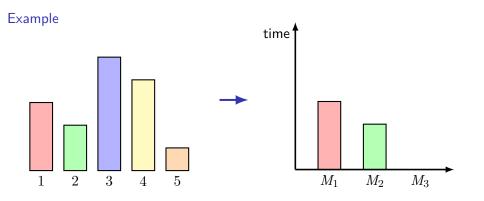
- 1 for $j \leftarrow 1, 2, ..., n$ do
 - 2 $\ \ \ \$ assign job j to a machine i that has smallest load;



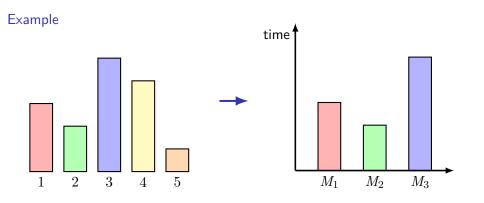
- 1 for $j \leftarrow 1, 2, ..., n$ do
- **2** igspace assign job j to a machine i that has smallest load;



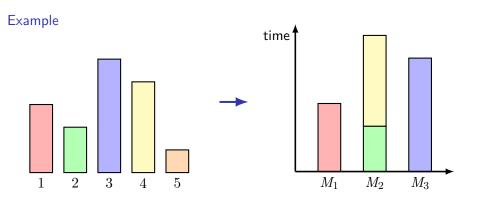
- 1 for $j \leftarrow 1, 2, \ldots, n$ do
- 2 \bigcup assign job j to a machine i that has smallest load;



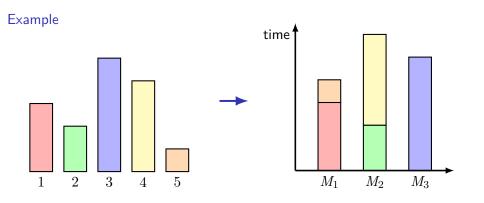
- 1 for $j \leftarrow 1, 2, \ldots, n$ do
- 2 \bigcup assign job j to a machine i that has smallest load;



- 1 for $j \leftarrow 1, 2, ..., n$ do
- **2** assign job j to a machine i that has smallest load;



- 1 for $j \leftarrow 1, 2, ..., n$ do
- 2 \bigcup assign job j to a machine i that has smallest load;



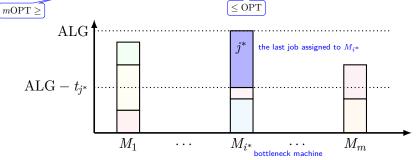
Approximation ratio of list scheduling

Theorem

List scheduling algorithm is a (2-1/m)-approximation

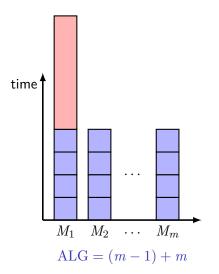
Proof

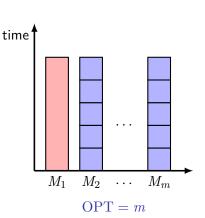
- OPT $\geq \frac{1}{m} \sum_{j=1}^{n} t_j$ and OPT $\geq \max_{j=1}^{n} t_j \geq t_{j^*}$
- $\sum_{j \in A(i^*)} t_j = \text{ALG}$ and $\sum_{j \in A(i)} t_j \ge \text{ALG} t_{j^*}$ for all M_i
- $\sum_{i=1}^{m} \sum_{j \in A(i)} t_j \ge mALG (m-1)t_{j^*} \longrightarrow ALG \le (2-\frac{1}{m})OPT$



Worst case of list scheduling

m machines, first m(m-1) jobs have length 1, last job has length m list scheduling algorithm outputs a (2-1/m)-approximation solution

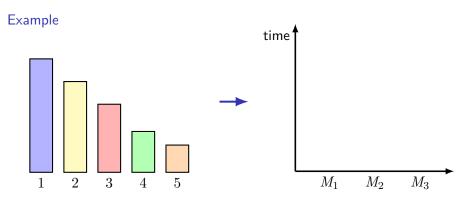




Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that $t_1 \geq t_2 \geq \cdots \geq t_n$;

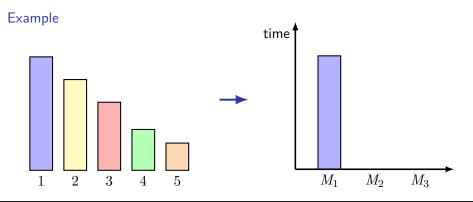
for
$$j \leftarrow 1, 2, \dots, n$$
 do



Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that $t_1 \geq t_2 \geq \cdots \geq t_n$;

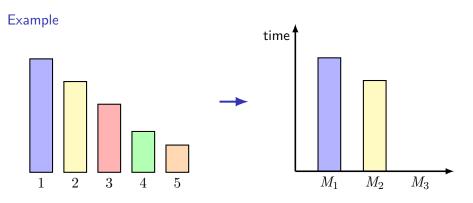
for $j \leftarrow 1, 2, \dots, n$ do



Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that $t_1 \geq t_2 \geq \cdots \geq t_n$;

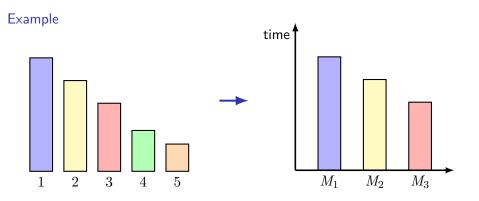
for
$$j \leftarrow 1, 2, \dots, n$$
 do



Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that $t_1 \geq t_2 \geq \cdots \geq t_n$;

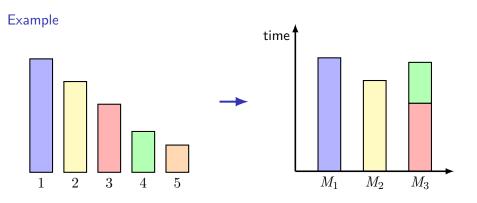
for
$$j \leftarrow 1, 2, \dots, n$$
 do



Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that $t_1 \geq t_2 \geq \cdots \geq t_n$;

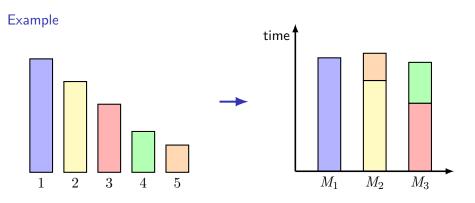
for
$$j \leftarrow 1, 2, \dots, n$$
 do



Longest Processing Time (LPT) algorithm

Sort jobs and relabel so that $t_1 \geq t_2 \geq \cdots \geq t_n$;

for
$$j \leftarrow 1, 2, \dots, n$$
 do



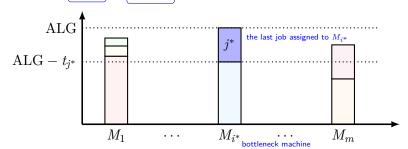
Approximation ratio of LPT

Theorem

LPT algorithm is a 1.5-approximation

Proof W.L.O.G. $|A(i^*)| \geq 2$ otherwise OPT = ALG = t_1

- OPT $\geq \frac{1}{m} \sum_{j=1}^{n} t_j = \frac{1}{m} \sum_{i=1}^{m} \sum_{j \in A(i)}^{m} t_j \geq ALG t_{j^*}$
- $\mathrm{OPT} \geq t_m + t_{m+1} \geq 2t_{j^*}$ because \exists machine gets two jobs from $1, 2, \ldots, m+1$
- ALG = $(ALG t_{j^*}) + t_{j^*} \le 1.5 \text{OPT}$ $\le \text{OPT}$ $\le \text{OPT/2}$



Outline

- Approximation algorithm
- 2 Load balancing problem
- Vertex Cover
- Traveling Salesman Problem

Weighted Vertex Cover Problem

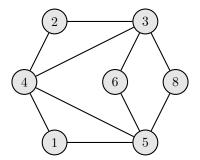
Problem

- Input: Undirected graph G=(V,E) with cost $c\colon V\to \mathbb{R}_+$
- Goal: find a minimum weight vertex cover

 $S\subseteq V$ is a vertex cover if each edge is incident to at least one vertex in S

This problem is **NP**-hard even when $c_v = 1 \ (\forall v \in V)$

Example



LP relaxation

(Integral) Vertex cover

$$\min \quad \sum_{v \in V} c_v x_v \quad \text{s.t.} \quad x_u + x_v \ge 1 \ (\forall \{u, v\} \in E), \quad x_v \in \{0, 1\} \ (\forall v \in V)$$

Relaxed vertex cover

$$\min \quad \sum_{v \in V} c_v x_v \quad \text{s.t.} \quad x_u + x_v \ge 1 \ (\forall \{u, v\} \in E), \quad x_v \in [0, 1] \ (\forall v \in V)$$

Observations

- $OPT^{int} \ge OPT^{relax}$
- Relaxed vertex cover can be solved in polynomial time (ellipsoid algorithm or interior point algorithm for LP)

LP rounding algorithm

Relaxed vertex cover

$$\min \quad \sum_{v \in V} c_v x_v \quad \text{s.t.} \quad x_u + x_v \ge 1 \ (\forall \{u, v\} \in E), \quad x_v \in [0, 1] \ (\forall v \in V)$$

Algorithm

- 1 Solve the relaxed vertex cover and let x^* be the optimal solution;
- 2 Return $S = \{v \in V \mid x_v^* \ge 1/2\};$

Theorem

The LP rounding algorithm is a 2-approximation

- Feasibility: $\forall \{u, v\} \in E$, $x_u^* \ge 1/2$ or $x_v^* \ge 1/2 \longrightarrow \{u, v\}$ is covered
- Approx. ratio: $\sum_{v \in S} w_v \le 2 \sum_{v \in V} c_v x_v^* \le 2 OPT^{int}$

Outline

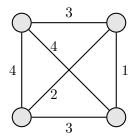
- $lue{1}$ Approximation algorithm
- 2 Load balancing problem
- Vertex Cover
- 4 Traveling Salesman Problem

Traveling Salesman Problem

Problem

- Input: Complete undirected graph G=(V,E) with distance $d\colon E\to \mathbb{R}_+$
- Goal: find a shortest cycle that visits all vertices exactly once

Example

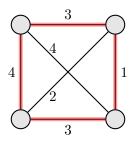


Traveling Salesman Problem

Problem

- Input: Complete undirected graph G=(V,E) with distance $d\colon E\to \mathbb{R}_+$
- Goal: find a shortest cycle that visits all vertices exactly once

Example



 $\mathsf{length} = 11$

Inapproximability

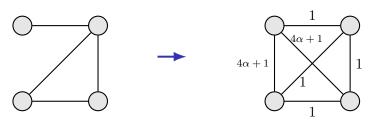
Theorem

Unless $\mathbf{P} = \mathbf{NP}$, there is no α -approximation algorithm for any $\alpha \geq 1$

• From a Hamiltonian-cycle instance G = (V, E), construct

$$d(u,v) = \begin{cases} 1 & \text{if } \{u,v\} \in E \\ \alpha |V| + 1 & \text{if } \{u,v\} \not\in E \end{cases}$$

• $\mathrm{OPT} = |V|$ if "yes" and $\mathrm{OPT} \geq \alpha |V| + 1$ if "no"

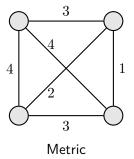


Metric Traveling Salesman Problem

Problem

- Input: Complete undirected graph G=(V,E) with distance $d\colon E\to\mathbb{R}_+$ where $d(u,w)\leq d(u,v)+d(v,w)$ for every $u,v,w\in V$
- Goal: find a shortest cycle that visits all vertices exactly once

Example





Not metric

Hardness of metric TSP

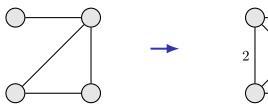
Theorem

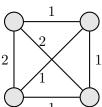
Metric TSP is NP-hard

• From a Hamiltonian-cycle instance G = (V, E), construct

$$d(u,v) = \begin{cases} 1 & \text{if } \{u,v\} \in E \\ 2 & \text{if } \{u,v\} \not\in E \end{cases}$$

• $\mathrm{OPT} = |V|$ if "yes" and $\mathrm{OPT} \geq |V| + 1$ if "no"





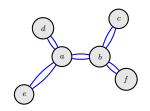
Simple 2-approximation algorithm

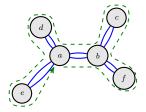
- 1 Find a minimum spanning tree T;
- 2 Double each edge in T (making Eulerian graph);
- 3 Find an Eulerian tour W on this graph (by DFS);
- 4 Delete all duplicates in W by keeping the first visit to each vertex u;

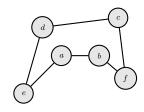
Theorem

The above algorithm is 2-approximation

$$\therefore$$
 ALG $\leq 2d(T) \leq 2$ OPT







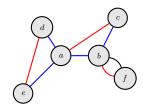
Christofides algorithm

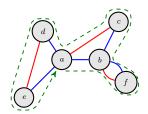
- 1 Find a minimum spanning tree T;
- 2 Compute a minimum weight perfect matching M in the complete graph over the odd-degree vertices in T;
- **3** Find an Eulerian tour W on $T \stackrel{\cdot}{\cup} M$;
- 4 Delete all duplicates in W by keeping the first visit to each vertex u;

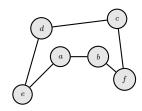
Theorem

The above algorithm is 1.5-approximation

$$\therefore$$
 ALG $\leq d(T) + d(M) \leq OPT + 0.5OPT = 1.5OPT$







metric TSP

Can we improve Christofides algorithm?

Theorem [Karlin, Klein, and Gharan 2020]

 $\exists~(1.5-\epsilon)\mbox{-approximation}$ algorithm for metric TSP for some $\epsilon>10^{-36}$

Theorem [Karpinski, Lampis, and Schmied 2015]

 $\not\exists~123/122$ -approximation algorithm for metric TSP unless $\mathbf{P}=\mathbf{NP}$