Advanced Core in Algorithm Design #11 算法設計要論 第11回

Yasushi Kawase 河瀬 康志

Dec. 21th, 2021

last update: 10:09am, December 21, 2021

Schedule

Lec. #	Date	Topics					
1	10/5	Introduction, Stable matching					
2	10/12	=					
3	10/19						
4	10/26	Greedy Algorithms (2/2)					
5	11/2						
6	11/9	Divide and Conquer $(2/2)$					
7	11/16	Dynamic Programming $(1/2)$					
8	11/30	Dynamic Programming $(2/2)$					
9	12/7	Network Flow (1/2)					
10	12/14	Network Flow $(2/2)$					
11	12/21	NP and Computational Intractability					
12	1/4	Approximation Algorithms $(1/2)$					
13	1/11	Approximation Algorithms $(2/2)$					
14	1/18	3 Final Examination					

Outline

- Polynomial-Time Reductions
- P vs NP
- NP-completeness

Problem, Algorithm, Running time

• A computational problem can be viewed as a map $f\colon I\to S$ from the set of instances to the set of solutions $I \qquad \qquad S$

```
Primality testing I=\mathbb{N}, S=\{\mathrm{yes},\mathrm{no}\}, f(1)=\mathrm{no},\ f(2)=\mathrm{yes},\ f(3)=\mathrm{yes},\ f(4)=\mathrm{no},\dots
```

- An algorithm for computing f is a set of rules such that by following them we can compute f(x) given any input $x \in I$
- An algorithm for computing f is said to be T(n)-time if it outputs f(x) in at most T(|x|) steps for any $x \in I$ [length of x]

Polynomial-time algorithms

Definition $p(n) = O(n^c)$ for some c > 0

Polynomial-time algorithm is p(n)-time algorithm for some polynomial p

"Efficient" algorithm \iff polynomial-time algorithm

Example: max-flow $(G = (V, E), s, t, c \colon E \to \mathbb{Z}_{++})$

- size of an instance is $\mathrm{O}(|\mathit{V}| + |\mathit{E}| + \sum_{e \in \mathit{E}} \log \mathit{c}(e))$
- \bullet Ford–Fulkerson: $\mathrm{O}(|E|\sum_{e\in E}c(e))$ time \longrightarrow not polynomial-time
- Capacity scaling: $O(|E|^2 \log \max_{e \in E} c(e))$ time \longrightarrow (weakly) polynomial-time
- Edmonds–Karp: $O(|E|^2|V|)$ time \longrightarrow (strongly) polynomial-time

Classify problems

we want to classify tractable problems

Definitoin

A problem is polynomial-time solvable if ∃polynomial-time alg. for it

Poynlmial-time solvable

- shortest path
- min cut
- bipartite matching
- linear programming
- primality testing

Probably not

- longest path
- max cut
- 3-dimensional matching
- integer linear programming
- factoring

Polynomial-time reductions

Definition

Problem X is polynomial-time reducible to problem Y ($X \leq_P Y$) if arbitrary instances of problem X can be solved using:

- polynomial number of standard computational steps
- ullet polynomial number of calls to oracle that solves problem $\,Y\,$

Example Bipartite matching \leq_P Max-flow

Observations

- $X \leq_{\mathrm{P}} Y$ and Y is solvable in poly-time $\Longrightarrow X$ is solvable in poly-time
- $\bullet \ \ X \leq_{\mathrm{P}} Y \ \text{and} \ X \ \text{is not solvable in poly-time} \Longrightarrow Y \ \text{is not solvable in poly-time}$
- $X \leq_{\mathrm{P}} Y$ and $Y \leq_{\mathrm{P}} Z \Longrightarrow X \leq_{\mathrm{P}} Z$ (transitivity)

Outline

- Polynomial-Time Reductions
- 2 P vs NP
- NP-completeness

Decision problem

Definition: Decision problem

- a problem where the answer for every instance is either yes or no
- can be represented as a map from $\{0,1\}^*$ to $\{0,1\}$ to $\bigcup_{n\geq 0}\{0,1\}^n$
- simple encodings can be used to represent general objects integers, pairs of integers, graphs, vectors, matrices,...
- $L_f = \{x \mid f(x) = 1\} \subseteq \{0,1\}^*$ is called language

Example: primality testing (determining whether an input number p is prime)

- f(x) = 1 iff x is a representation of a prime
- f(1) = 0, f(11) = 1, f(101) = 1

Uncomputable decision problem

Theorem

 \exists decision problem that is not computable by any algorithm

- The number of decision problems is uncountable
- The number of algorithm is countable

P and NP

Definition: class P

The set of decision problems for which ∃poly-time algorithm

Definition: class NP

The set of decision problems f for which $\exists g$ such that

- ullet g is computable by a polynomial-time algorithm
- $\bullet \ f(x) = 1 \iff \exists \underbrace{w}, \exists polynomial \mathbf{p}, \ |w| \leq p(|x|) and g(x,w) = 1$ witness
- P stands for Polynomial-time
- NP stands for Non-deterministic Polynomial-time
- Observation: $P \subseteq NP$

P vs NP

Conjecture

$P \neq NP$

- ullet Most computer scientists believe that ${f P}
 eq {f NP}$
- \$1,000,000 for resolution of **P** vs **NP** problem (millennium prize)

https://www.claymath.org/millennium-problems/p-vs-np-problem

- 1. Yang-Mills and Mass Gap
- 2. Riemann Hypothesis
- 3. P vs NP Problem
- 4. Navier-Stokes Equation
- 5. Hodge Conjecture
- 6. Poincaré Conjecture solved by Grigori Perelman
- 7. Birch and Swinnerton-Dyer Conjecture

Problems in **NP** (1/4)

Satisfiability problem (SAT)

Given a CNF formula Φ , does it have a satisfying truth assignment?

3-SAT

SAT where each clause contains exactly 3 literals

- boolean variables: x_1, \ldots, x_n
- literal: $x_1, \ldots, x_n, \overline{x_1}, \ldots, \overline{x_n}$
- clause: a disjunction of literals, e.g., $C_j = x_1 \vee \overline{x_2} \vee x_3$
- conjunctive normal form : conjunction of clauses, e.g., $\Phi = C_1 \wedge C_2 \wedge C_5$

Examples

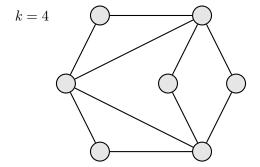
- $\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4) \longrightarrow \mathsf{Yes}$
- $\Phi = (x_1 \lor x_2) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \longrightarrow \mathsf{No}$

Problems in NP (2/4)

Independent set problem (IS)

Given a graph G=(V,E) and an integer k, is there $S\subseteq V$ such that $|S|\geq k$ and no two vertices in S are adjacent?

Example

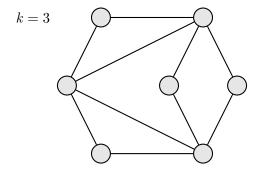


Problems in NP (3/4)

Vertex cover (VC)

Given a graph G=(V,E) and an integer k, is there $C\subseteq V$ such that $|C|\leq k$ and each edge is incident to at least one vertex in C?

Example



Problems in NP (4/4)

Set cover problem (Set-Cover)

Given a set U of elements, $S_1, S_2, \ldots, S_m \subseteq U$, an integer k, is there $J \subseteq \{1, 2, \ldots, m\}$ such that $|I| \le k$ and $\bigcup_{j \in J} S_j = U$?

Example

- $U = \{1, 2, 3, 4\}$
- $S_1 = \{1, 3\}$
- $S_2 = \{1, 2\}$
- $S_3 = \{2, 3, 4\}$
- k = 2

Outline

- Polynomial-Time Reductions
- P vs NP
- NP-completeness

NP-complete

Definition

- A problem X is \mathbf{NP} -hard if $Y \leq_{\mathbf{P}} X$ for every $Y \in \mathbf{NP}$
- ullet A problem X is NP-complete if it is NP-hard and in NP

Proposition

- If X is NP-hard and $X \leq_{\mathbf{P}} Y$, then Y is also NP-hard
- If X is \mathbf{NP} -complete and $X \leq_{\mathbf{P}} Y \in \mathbf{NP}$, then Y is also \mathbf{NP} -complete
- If X is \mathbf{NP} -complete, then $X \in \mathbf{P}$ iff $\mathbf{P} = \mathbf{NP}$

Q: are there any "natural" NP-complete problems?

The first NP-complete problem

Cook-Levin Theorem

SAT is NP-complete

Proof sketch formal proof requires nondeterministic Turing machine

- We show $X \leq_{\mathbf{P}} \mathsf{SAT}$ for any $X \in \mathbf{NP}$
- Let g be a certificate of X
 - ullet g is computable by a polynomial-time algorithm
 - $f(x) = 1 \iff \exists w, |w| \le p(|x|), g(x, w) = 1$
- We construct a CNF that "simulates" the algorithm
 - ullet the algorithm for g runs in poly-space and poly-step
 - make a boolean variable for every pair of place and step

SAT reduces to 3-SAT

Theorem

SAT \leq_P 3-SAT, and hence 3-SAT is NP-complete

Proof

- Transform each clause individually
 - $C = \ell \longrightarrow (\ell \lor z_1 \lor z_2) \land (\ell \lor z_1 \lor \overline{z_2}) \land (\ell \lor \overline{z_1} \lor z_2) \land (\ell \lor \overline{z_1} \lor \overline{z_2})$
 - $C = \ell_1 \vee \ell_2 \longrightarrow (\ell_1 \vee \ell_2 \vee z) \wedge (\ell_1 \vee \ell_2 \vee \overline{z})$
 - $C = \ell_1 \vee \ell_2 \vee \ell_3 \longrightarrow \ell_1 \vee \ell_2 \vee \ell_3$
 - $C = \ell_1 \lor \ell_2 \lor \cdots \lor \ell_k \ (k > 3)$ • $(\ell_1 \lor \ell_2 \lor z_1) \land (\ell_3 \lor \overline{z_1} \lor z_2) \land (\ell_4 \lor \overline{z_2} \lor z_3) \land \cdots \land (\ell_{k-2} \lor \overline{z_{k-4}} \lor z_{k-3}) \land (\ell_{k-1} \lor \ell_k \lor \overline{z_{k-3}})$
- The reduction preserves satisfiability

3-SAT reduces to Independent set problem

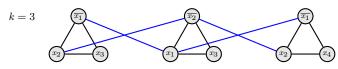
Theorem

3-SAT \leq_P IS, and hence IS is NP-complete

Proof

- ullet Given a 3-SAT instance Φ , we construct an IS instance (G,k) as follows
 - Each clause triangle (3 vertices and 3 edges)
 - Connect literal to each of its negations
 - k = |Φ|
- ullet is satisfiable \iff G has an independent set of size k

Example $\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$



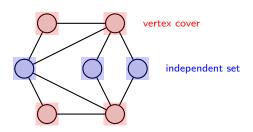
Vertext cover problem

Theorem

IS \leq_P VC, and hence VC is NP-complete

Proof

- Observation: S is an independent set $\iff V \setminus S$ is a vertex cover
- ullet (G,k) is a yes-instance of IS \iff (G,|V|-k) is a yes-instance of VC



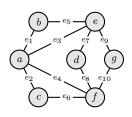
Set cover problem

Theorem

 $VC \leq_P Set\text{-}Cover$, and hence Set-Cover is $\mathbf{NP}\text{-}complete$

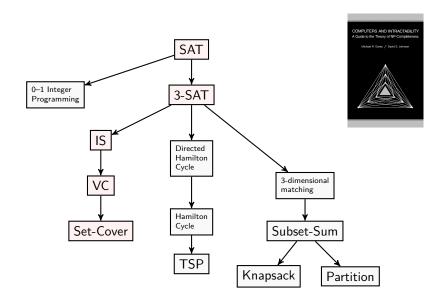
Proof

- Given a VC instance (G, k), we construct (U, S, k') as follows
 - U = E, k' = k
 - For each $v \in V$, $S_v = \{e \in E \mid e \text{ incident to } v\}$
- G has a vertex cover of size $k \iff (U,S)$ has a set cover of size k

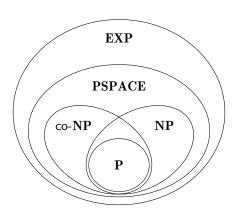


- $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $S_a = \{1, 2, 3, 4\}, S_b = \{1, 5\}, S_c = \{2, 6\},$ $S_d = \{7, 8\}, S_e = \{3, 5, 7, 9\},$ $S_f = \{4, 6, 8, 10\}, S_g = \{9, 10\}$

Basic NP-complete problems



Other Basic Complexity Classes



- $P \subseteq NP \subseteq PSPACE \subseteq EXP$
- $P \neq EXP$
- cf. https://complexityzoo.net/Complexity_Zoo (545 classes)

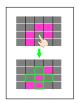
Quiz

Which puzzles are known to be NP-hard?

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

 $n \times n$ sudoku

numberlink



 $n \times n$ lights out

 $n \times n \times n$ Rubik's cube